Skip to main content

Avoiding Magnetic Monopoles in Numerical MHD Calculations

  • Conference paper
Book cover Interstellar Magnetic Fields

Abstract

Beside the equations for mass, momentum and energy conservation, a numerical magnetohydrodynamical (MHD) code (assuming infinite conductivity) has to solve the magnetic field equation:

$$\frac{\partial }{{\partial t}}\overrightarrow B = [\overrightarrow \triangleright \times [\overrightarrow v \times \overrightarrow B ]],$$
(1)

which automatically fulfills \((\overrightarrow \triangleright \cdot \overrightarrow B ) =0\) if used as an initial condition. However, due to discretization errors usually artificial magnetic monopoles develop and grow during the computation, what causes an artificial force parallel to the field, energy and momentum no longer being conserved (BRACKBILL and BARNES [1]). Stationarity may not be achieved. In the present study we discuss the effects of the monopoles, and we get rid of them in treating \((\overrightarrow \triangleright \cdot \overrightarrow B ) = 0\) as a dynamical condition: RAMSHAW [2] shows that field equation (1) and solenoidal condition together are equivalent with the two equations (for \((\overrightarrow \triangleright \cdot \overrightarrow B ) = 0\))

$$\frac{\partial }{{\partial t}}\overrightarrow B = [\overrightarrow \triangleright \times [\overrightarrow v \times \overrightarrow B ]] + \overrightarrow \triangleright \Psi (\overrightarrow x ,t),$$
(2)
$${\overrightarrow \triangleright ^2}\Psi = \frac{\partial }{{\partial t}}\left( {\overrightarrow \triangleright \cdot \overrightarrow B } \right).$$
(3)

To implement (2) and (3) to a MHD code, it is more convenient to define the potential (with (△t is the time step)

$$\Phi (\overrightarrow x ) = \int_{t - \triangleleft t}^t {\Psi (\overrightarrow x ,{t^/})d{t^/}} .$$
(4)

After having calculated \(\overrightarrow B (\overrightarrow x ,t)\) from (1), we solve the Poisson equation

$${\overrightarrow \triangleright ^2}\Phi = - (\overrightarrow \triangleright \cdot \overrightarrow B ).$$
(5)

Finally \(\overrightarrow B (\overrightarrow x ,t)\) from (1) has to be replaced by

$${\overrightarrow B ^/}(\overrightarrow x ,t) = \overrightarrow B (\overrightarrow x ,t) + \overrightarrow \triangleright \Phi ,$$
(6)

what is equivalent to solving (2) and (3), and yields the ordinary field equation (1) with \((\overrightarrow \triangleright \cdot \overrightarrow B )=0\) and \( \tilde \Phi \)=const.on the boundary surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brackbill, J.U., Barnes, D.C.: 1980, J. Comp. Phys. 35, 426

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Ramshaw, J.D.: 1983, J. Comput. Phys. 52, 592

    Google Scholar 

  3. Beam, R.M., Warming, R.F.: 1976, J. Comp. Phys. 22, 87

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Beam, R.M., Warming, R.F.: 1978, AIAA J. 16, 393

    Article  ADS  MATH  Google Scholar 

  5. Low, B.C.: 1982a, Astrophys. J. 254, 796

    Article  MathSciNet  ADS  Google Scholar 

  6. Low, B.C.: 1982b, Astrophys. J. 261, 351

    Article  MathSciNet  ADS  Google Scholar 

  7. Schmidt, H.U., Wegmann, R.: 1980, Comp. Phys. Comm. 19, 309

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmidt-Voigt, M. (1987). Avoiding Magnetic Monopoles in Numerical MHD Calculations. In: Beck, R., Gräve, R. (eds) Interstellar Magnetic Fields. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72621-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72621-7_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72623-1

  • Online ISBN: 978-3-642-72621-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics