Skip to main content

Comparison of Envelope Membranes From Higher Plants and Algae Plastids and of Outer Membranes From Cyanobacteria (Blue-Green Algae)

  • Conference paper
Algal Development

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

The plastid envelope is a fascinating membrane system. In higher plants and in several algae, the envelope consists of a pair of membranes although it is a more complex structure in numerous algae such as Euglena (Lefort-Tran, 1981). Envelope membranes provide a flexible boundary between the plastid and the surrounding cytosol (Douce et al, 1984). Therefore, a major function of envelope membranes is the selective control of metabolite transport, owing to specific translocators located on the inner membrane (Heldt and Heber, 1981). Besides this role in photosynthesis regulation, the envelope membranes are involved in plastid biogenesis. They regulate the uptake and transport of plastid proteins that are synthesized on cytoribosomes (Chua and Schmidt, 1979). In addition, they can catalyze the synthesis of characteristic plastid glycerolipid and prenylquinones (Douce et al, 1984); these studies were made possible owing to the development of efficient methods to purify large amounts of envelope membranes from higher plant chloroplasts. With the exception of Euglena, few studies were done with algae plastid envelopes (Blee, 1981; Brandt, 1982/83), mostly due to the difficulty to prepare intact chloroplasts. However, this has recently been achieved for Chlamydomonas (Mendiola-Morgenthaler et al, 1985) and it is therefore possible to compare some properties (lipid content and role in glycerolipid biosynthesis) of envelope membranes from higher plants and algae; this is the purpose of this article. In addition, further comparison with the outer membranes of cyanobacteria is most interesting since it is generally assumed, without experimental evidences, that the inner envelope membrane from chloroplasts could derive from the plasma membrane of the prokaryotic ancestor whereas the outer envelope membrane of chloroplasts could derive from the endomembrane system of the protoeukaryote that engulfed the free living prokaryote.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, C.F., Hirayama, O. and Good, P., (1966) in: Biochemistry of Chloroplasts, volume 1, T.W. Goodwin, ed., pp. 195–200, Academic Press, London.

    Google Scholar 

  • Andrews, J. and Mudd, J.B. (1985) Plant Physiol. 79, 259–265.

    Article  PubMed  CAS  Google Scholar 

  • Blee, E. (1981) Thèse de Doctorat d’Etat. Université de Strasbourg, France.

    Google Scholar 

  • Bligny, R. and Douce, R. (1980) Biochim. Biophys. Acta 617, 254–263.

    PubMed  CAS  Google Scholar 

  • Block, M.A., Dorne, A.-J., Joyard, J. and Douce, R. (1983a) J. Biol. Chem. 258, 13281–13286.

    PubMed  CAS  Google Scholar 

  • Block, M.A., Dorne, A.-J., Joyard, J. and Douce, R. (1983b) FEBS lett. 169, 111–115.

    Article  Google Scholar 

  • Boehler, B.A. and Ernst-Fonberg, M.L. (1976) Arch. Biochem. Biophys. 175, 229–235

    Article  PubMed  CAS  Google Scholar 

  • Brandt, P. (1982/83) Plant Sci. Lett. 28, 237–244.

    Google Scholar 

  • Brangeon, J. and Forchioni, A. (1986) in: Regulation of chloroplast differentiation, G. Akoyunoglou and H. Senger, eds., pp. 141–146. Alan R. Liss, New-York.

    Google Scholar 

  • Chammai, A. and Schantz, R. (1979) in: Advances in the Biochemistry and Physiology of Plant lipids, L.-A Appelqvist and C. Liljenberg, eds., pp.381–386, Elsevier, Amsterdam.

    Google Scholar 

  • Chua, N.-H. and Schmidt, G. (1979) J. Cell. Biol. 81, 461–483.

    Article  PubMed  CAS  Google Scholar 

  • Cline, K., Andrews, J., Mersey, B., Newcomb, E.H. and Keegstra, K. (1981) Proc. Natl. Acad. Sci. USA 78, 3595–3599.

    Article  PubMed  CAS  Google Scholar 

  • Dorne, A.-J., Block, M.A., Joyard, J. and Douce, R. (1982) FEBS lett. 145, 30–34.

    Article  CAS  Google Scholar 

  • Dorne, A.-J., Joyard, J., Block, M.A. and Douce, R. (1985) J. Cell Biol. 100, 1690–1697.

    Article  PubMed  CAS  Google Scholar 

  • Douce, R. (1974) Science 183, 852–853.

    Article  PubMed  CAS  Google Scholar 

  • Douce, R. and Guillot-Salomon, T. (1970) FEBS Lett. 11, 121–126.

    Article  PubMed  CAS  Google Scholar 

  • Douce, R. and Joyard, J. (1980) in: The Biochemistry of Plants, volume 4, P.K. Stumpf, ed., pp. 321–362. Academic Press, New-York.

    Google Scholar 

  • Douce, R., Holtz, R.B. and Benson, A.A. (1973) J. Biol. Chem. 248, 7215–7222.

    PubMed  CAS  Google Scholar 

  • Douce, R., Block, M.A., Dorne, A.-J. and Joyard, J. (1984) Subcellular Biochem. 10, 1–84.

    Article  CAS  Google Scholar 

  • Eichenberger, W. (1982) Plant Sci. Lett. 24, 91–95.

    Article  CAS  Google Scholar 

  • Fishwick, M.J. and Wright, A.J. (1980) Phytochemistry 19, 55–59.

    Article  CAS  Google Scholar 

  • Frentzen, M., Heinz, E., McKeon, T.A. and Stumpf, P.K. (1983) Eur. J. Biochem. 129, 629–636.

    Article  PubMed  CAS  Google Scholar 

  • Harwood, J.L. and Russell, N.J. (1984) Lipids in Plants and Microbes. George Allen and Unwin, London.

    Google Scholar 

  • Heber, H. and Heidt, H.W. (1981) Ann. Rev. Plant Physiol. 32, 139–168.

    Article  CAS  Google Scholar 

  • Heemskerk, J. (1986) Ph.D. Thesis. University of Nijmegen, Holland.

    Google Scholar 

  • Heemskerk, J., Wintermans, J.F.G.M., Joyard, J., Block, M.A., Dorne, A.-J. and Douce R. (1986) Biochim. Biophys. Acta 877, 281–289.

    CAS  Google Scholar 

  • Heinz, E. (1977) in: Lipids and Lipid Polymers in Higher Plants, M. Tevini and H.K. Lichtenthaler, eds., pp. 102–120. Springer-Verlag, Berlin.

    Google Scholar 

  • Heinz, E. and Roughan, P.G. (1983) Plant Physiol. 72, 273–279.

    Article  PubMed  CAS  Google Scholar 

  • Jelsema, C.L., Michaels, A.S., Janero, D.R. and Barrnett, R.J. (1982) J. Cell Sci. 58, 469–488.

    PubMed  CAS  Google Scholar 

  • Journet, E.-P. and Douce, R. (1985) Plant Physiol. 79, 458–467.

    Article  PubMed  CAS  Google Scholar 

  • Joyard, J. and Douce, R. (1976) C.R. Acad. Sci. Paris 282, 1515–1518.

    CAS  Google Scholar 

  • Joyard, J. and Douce, R. (1977) Biochim. Biophys. Acta 486, 273–285.

    PubMed  CAS  Google Scholar 

  • Joyard, J. and Douce, R. (1979) FEBS Lett. 102, 147–150.

    Article  PubMed  CAS  Google Scholar 

  • Joyard, J., Chuzel, M. and Douce, R. (1979) In: Advances in the Biochemistry and Physiology of Plant Lipids, L.-A. Appelqvist and C. Liljenberg, eds., pp. 181–186. Elsevier, Amsterdam.

    Google Scholar 

  • Joyard, J., Blee, E. and Douce, R. (1986) Biochim. Biophys. Acta in press (BBA 52409).

    Google Scholar 

  • Kleppinger-Sparace, K.F., Mudd, J.B. and Bishop, D.G. (1985) Arch. Biochem. Biophys. 240, 859–865.

    Article  PubMed  CAS  Google Scholar 

  • Liedvogel, B., and Kleinig, H. (1070) Planta 144, 467–471.

    Article  Google Scholar 

  • Lefort-Tran, M. (1981) Ber. Dtsch, Bot. Ges. 94, 463–476.

    Google Scholar 

  • Lewin, R.A. (1981) in: Origins and evolution of eukaryotic intracellular organelles, J.F. Fredrick, ed., pp. 325–329. Ann. N.Y. Acad. Sci. New-York.

    Google Scholar 

  • Lucy, J.A. and Ahkong, Q.J. (1986) FEBS Lett. 199, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Mendiola-Morgenthaler, L., Eichenberger, W. and Boschetti, A. (1985) Plant Sci. Lett. 41, 97–104.

    Article  CAS  Google Scholar 

  • Michaels, A.S., Jelsema, C.L. and Barrnett, R.J. (1983) J. Ultra. Res. 82, 35–51.

    Article  CAS  Google Scholar 

  • Miquel, M., Block, M.A., Joyard, J., Öorne, A.-J., Dubacq, J.-P., Kader, J.C. and Douce, R. (1984) In: Structure, Function and Metabolism of Plant Lipids P.A. Siegenthaler and W. Eichenberger, eds., pp. 295–298. Elsevier, Amsterdam.

    Google Scholar 

  • Mudd, J.B. and de Zacks, R. (1981) Arch. Biochem. Biophys. 209, 584–591.

    Article  PubMed  CAS  Google Scholar 

  • Murata, N. and Sato, N. (1982) in: Biochemistry and Metabolism of Plant Lipids, J.F.G.M. Wintermans and P.J.C. Kuiper, eds., pp. 165–168. Elsevier Biomedical Press, Amsterdam.

    Google Scholar 

  • Murata, N. and Sato, N. (1983) Plant Cell Physiol. 24, 133–138.

    CAS  Google Scholar 

  • Murata, N., Sato, N., Omata, T. and Kuwabara, T. (1981) Plant Cell Physiol. 22, 855–866.

    CAS  Google Scholar 

  • Nichols, B.W., Harris, R.V. and James, A.T. (1965) Biochem. Biophys. Res. Commun. 20, 256–262.

    Article  PubMed  CAS  Google Scholar 

  • Omata, T. and Murata, N. (1983) Plant Cell Physiol. 24, 1101–1112.

    CAS  Google Scholar 

  • Peschek, G.A. (1984) Subcellular Biochem. 10, 85–191.

    Article  CAS  Google Scholar 

  • Roughan, P.G. and Slack, C.R. (1982) Annu. Rev. Plant Physiol. 33, 97–132.

    Article  CAS  Google Scholar 

  • Sato, N. and Furuya, M. (1984) in: Structure, Function and Metabolism of Plant Lipids, P.A. Siegenthaler and W. Eichenberger, eds., pp. 171–174, Elsevier, Amsterdam.

    Google Scholar 

  • Sato, N. and Murata, N. (1982a) Biochim. Biophys. Acta 710, 271–278.

    CAS  Google Scholar 

  • Sato, N. and Murata, N. (1982b) Biochim. Biophys. Acta 710, 279–289.

    CAS  Google Scholar 

  • Sato, N. and Murata, N. (1982c) Plant Cell. Physiol. 23, 1115–1120.

    CAS  Google Scholar 

  • Siebertz, H.P., Heinz, E., Linscheid, M., Joyard, J., and Douce, R. (1979) Eur. J. Biochem. 101, 429–438.

    Article  PubMed  CAS  Google Scholar 

  • Sparace, S.A. and Mudd, J.B. (1982) Plant Physiol. 70, 1260–1264.

    Article  PubMed  CAS  Google Scholar 

  • Stumpf, P.K. (1980) in: The Biochemistry of Plants, Vol. 4, P.K. Stumpf, ed., pp. 177–204. Academic Press, New-York.

    Google Scholar 

  • Van Besouw, A. and Wintermans, J.F.G.M. (1978). Biochim. Biophys. Acta 529, 44–53.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Joyard, J., Block, M.A., Dorne, AJ., Douce, R. (1987). Comparison of Envelope Membranes From Higher Plants and Algae Plastids and of Outer Membranes From Cyanobacteria (Blue-Green Algae). In: Wiessner, W., Robinson, D.G., Starr, R.C. (eds) Algal Development. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72604-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72604-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72606-4

  • Online ISBN: 978-3-642-72604-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics