Acid Hydrolysis of Cellulose

  • Liang-tseng Fan
  • Mahendra Moreshwar Gharpuray
  • Yong-Hyun Lee
Part of the Biotechnology Monographs book series (BIOTECHNOLOGY, volume 3)

Abstract

Cellulosic materials consist of three major components, namely, cellulose, hemicellulose, and lignin. The two modes of converting the carbohydrate components into their constituent sugars are enzymatic hydrolysis and acid hydrolysis. The former has been reviewed in the preceding chapter [38,39, 81 ]. The present chapter covers the latter with the focus on mechanism and kinetics of acid hydrolysis.

Keywords

Biomass Sugar Entropy Iodine Polysaccharide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achwal WB et al. (1959) J Poly Sci 35:93Google Scholar
  2. 2.
    Achwal WB, Nabar GM (1960) J Text Res 30:872Google Scholar
  3. 3.
    Akhmetov KA (1975) Izo Akad Nauk Uzb SSR Ser Takn Nauk 19:78Google Scholar
  4. 4.
    Alexander WJ, Mitchell RL (1949) Anal Chem 21:1497Google Scholar
  5. 5.
    Almin KE et al. (1972) J Appl Poly Sci 16:2583Google Scholar
  6. 6.
    Andren RK et al. (1976) Appl Poly Symp 28:205Google Scholar
  7. 7.
    Atalla RH (1979) J Am Chem Soc 101:65Google Scholar
  8. 8.
    Bao Y et al. (1980) J Appl Poly Sci 25:263Google Scholar
  9. 9.
    Barth HG, Regnier FE (1980) J Chromatogr 192:275Google Scholar
  10. 10.
    Barker RH, Vail SL (1967) J Text Res 37:1077Google Scholar
  11. 11.
    Battista OA (1950) Ind Eng Chem 42:502Google Scholar
  12. 12.
    Battista OA et al. (1956) Ind Eng Chem 48:33Google Scholar
  13. 13.
    Battista OA, Coppick S (1947) J Text Res 17:419Google Scholar
  14. 14.
    Beall G, Jorgensen L (1951) ibid. 21:203Google Scholar
  15. 15.
    Beringer FM, Sands S (1953) J Am Chem Soc 75:3319Google Scholar
  16. 16.
    Betrabet SM, Paralikar KM (1978) Cell Chem Technol 12:241Google Scholar
  17. 17.
    Birtwell C et al. (1926) J Text Inst 17:1457Google Scholar
  18. 18.
    Blackwell J et al. (1977) ACS Symp Ser 48:42Google Scholar
  19. 19.
    Bose A, Tsao GT (1980) Bioconv Biochem Eng, vol 1. BERC IIT Delhi, New Delhi, p 279Google Scholar
  20. 20.
    Bose JL et al. (1971) J Appl Poly Sci 15:2999Google Scholar
  21. 21.
    Browning BL (1967) Methods of wood chemistry. Interscience, New YorkGoogle Scholar
  22. 22.
    Bunton CA et al. (1955) J Chem Soc (London) 4419Google Scholar
  23. 23.
    Caulfield DF, Steffes RA (1969) TAPPI 52:1361Google Scholar
  24. 24.
    Chang M et al. (1981) In: Fiechter A (ed) Adv Biochem Eng, vol 20. Springer, Berlin Heidelberg New York, p 15Google Scholar
  25. 25.
    Chang M (1971) J Poly Sci C 36:343Google Scholar
  26. 26.
    Chang M (1974) J Poly Sci A-1 12:1349Google Scholar
  27. 27.
    Chang M et al. (1973) J Poly Sci A-2 11:399Google Scholar
  28. 28.
    Chang M et al. (1976) National Science Council Monthly (China) 4:2665Google Scholar
  29. 29.
    Chang M (1979) Presented at the 72nd AIChE Annual Meeting, San Francisco, CA, Nov. 25–29Google Scholar
  30. 30.
    Daruwalla EH (1966) TAPPI 49:106Google Scholar
  31. 31.
    Daruwalla EH, Nabar GM (1956) J Poly Sci 20:94Google Scholar
  32. 32.
    Daruwalla EH, Shet RT (1962) J Text Res 32:942Google Scholar
  33. 33.
    Davidson GF (1943) ibid. 34:T87Google Scholar
  34. 34.
    Davidson GF, Nevell TP (1959) ibid. 50:T238Google Scholar
  35. 35.
    Davidson GF, Nevell TP ibid. 48:T356Google Scholar
  36. 36.
    Fagan RD et al. (1971) Environ Sci Technol 5:545Google Scholar
  37. 37.
    Fagerstam L et al. (1977) In: Ghose TK (ed) Proc Intern Symp Bioconv Cellulosic substances into chemicals, Energy and Microbial Protein. BERC IIT Delhi, New DelhiGoogle Scholar
  38. 38.
    Fan LT et al. (1980) In: Fiechter A (ed) Adv Biochem Eng, vol 14. Springer, Berlin Heidelberg New York, p 101Google Scholar
  39. 39.
    Fan LT et al. (1982) In: Fiechter A (ed) Adv Biochem Eng, vol 23. Springer, Berlin Heidelberg New York, p 158Google Scholar
  40. 40.
    Fan LT et al. (1980) In: Ghose TK (ed) Bioconv Biochem Eng, vol 1. BERC IIT Delhi, New Delhi, p 233Google Scholar
  41. 41.
    Fong WS et al. (1980) Chem Eng Prog Sept.Google Scholar
  42. 42.
    Freudenberg K (1930) Ann 460:288Google Scholar
  43. 43.
    Freudenberg K (1921) Chem Ber 54:767Google Scholar
  44. 44.
    Freudenberg K et al. (1930) ibid. 63:1610Google Scholar
  45. 45.
    Freudenberg K, Blomquist G (1936) ibid. 68:2070Google Scholar
  46. 46.
    Freudenberg K, Kuhn W (1932) ibid. 65B:484Google Scholar
  47. 47.
    Gaden EL Jr et al. (eds) (1976) Biotechnol Bioeng Symp, no 6. Interscience, New YorkGoogle Scholar
  48. 48.
    Goldstein IS (1981) Organic chemicals from biomass. CRC Press, FloridaGoogle Scholar
  49. 49.
    Goto K et al. (1971) Agr Biol Chem 35:111Google Scholar
  50. 50.
    Grethlein HE (1978) Biotechnol Bioeng 20:503Google Scholar
  51. 51.
    Grethlein HE (1978) J Appl Chem Biotechnol 28:296Google Scholar
  52. 52.
    Halliwell G (1977) In: Ghose TK (ed) Proc Bioconv Symp. BERC IIT Delhi, New Delhi, p 81Google Scholar
  53. 53.
    Hammett LP, Paul MA (1934) J Am Chem Soc 56:830Google Scholar
  54. 54.
    Han YW (1978) Adv Appl Microbiol 23:19Google Scholar
  55. 55.
    Harris EE, Kline AJ (1949) J Phys Colloid Chem 53:344Google Scholar
  56. 56.
    Hebeish A et al. (1979) Cell Chem Technol 13:543Google Scholar
  57. 57.
    Heidt LJ, Purves CB (1944) J Am Chem Soc 66:1385Google Scholar
  58. 58.
    Hermans PH et al. (1951) Macromol Chem 6:25Google Scholar
  59. 59.
    Hermans PH, Weidinger A (1949) J Poly Sci 4:317Google Scholar
  60. 60.
    Hermans PH, Weidinger A (1951) ibid. 6:533Google Scholar
  61. 61.
    Higgin HG et al. (1958) ibid. 32:247Google Scholar
  62. 62.
    Immergut EA, Rånby BG (1956) Ind Eng Chem 48:1183Google Scholar
  63. 63.
    Isbell HS, Frush HL (1940) J Res Natl Bur Standards 24:125Google Scholar
  64. 64.
    Jellinek HHG (1944) Trans Faraday Soc 40:266Google Scholar
  65. 65.
    Jorgenson L (1950) Acta Chem Scand 4:185Google Scholar
  66. 66.
    Jorgenson L (1950) ibid. 4:658Google Scholar
  67. 67.
    Jorgenson L (1947) ibid. 3:780Google Scholar
  68. 68.
    Klages FZ (1932) Physik Chem A159:357Google Scholar
  69. 69.
    Klages FZ (1935) Ann 520:71Google Scholar
  70. 70.
    Knappert D et al. (1980) Biotechnol Bioeng 22:1449Google Scholar
  71. 71.
    Knappert D et al. (1981) Presented at “3rd Symposium on Biotechnol. in Energy Production Conservation”, Gatlinburg, TennesseeGoogle Scholar
  72. 72.
    Kobayashi T et al. (1960) Bull Agri Chem Soc (Japan) 24:443Google Scholar
  73. 73.
    Kobayashi T (1952) Presented at the Wood Saccharification Discussion Committee, no 1, p 27Google Scholar
  74. 74.
    Kobayashi T, Sakai Y (1957) In: Asai T (ed) Koboriyokogyo. Tokyo, p 188Google Scholar
  75. 75.
    Krasag K (1976) Appl Poly Symp 28:777Google Scholar
  76. 76.
    Kuhn W (1930) Chem Ber 63:1503Google Scholar
  77. 77.
    Kusakabe IT et al. (1975) J Ferment Technol 53:135Google Scholar
  78. 78.
    Kusama J (1979) Chemical Economy & Engineering Review 11 (16): 32Google Scholar
  79. 79.
    Lecttenberg VL et al. (1972) Agronomy J 64:675Google Scholar
  80. 80.
    Lee SB et al. (1983) Biotechnol Bioeng 25:33Google Scholar
  81. 81.
    Lee YH et al (1980) In: Fiechter A (ed) Adv Biochem Eng, vol 17. Springer, Berlin Heidelberg New York, p 131Google Scholar
  82. 82.
    Lin, KW (1981) AIChE Symp Ser 77:102Google Scholar
  83. 83.
    Lin SY (1972) Fiber Sci Technol 5:303Google Scholar
  84. 84.
    Lokhande HT (1978) J Appl Poly Sci 22:533Google Scholar
  85. 85.
    Long FA, Paul MA (1957) Chem Revs 57:935Google Scholar
  86. 86.
    Mandels M et al. (1974) Biotechnol Bioeng 16:1471Google Scholar
  87. 87.
    Manjunath BR, Peacock N (1969) J Text Res 70Google Scholar
  88. 88.
    Marchessault RH, Rånby BG (1959) Svensk Papperstidn 62:230Google Scholar
  89. 89.
    McBurney LF (1954) In: Ott E et al. (eds) Presented at Cellulose and Cellulose Derivatives, Interscience, New York, p 99Google Scholar
  90. 90.
    McIntyre D, Long FA (1954) J Am Chem Soc 76:3240Google Scholar
  91. 91.
    McKeown JJ, Lyness WI (1960) J Poly Sci 47:9Google Scholar
  92. 92.
    McKibbin SSW (1958) Ph. D. Dissertation, University of WisconsinGoogle Scholar
  93. 93.
    Meller A (1949) J Poly Sci 4:619Google Scholar
  94. 94.
    Meller A (1961) ibid. 51:100Google Scholar
  95. 95.
    Meller A (1963) ibid. C-2:97Google Scholar
  96. 96.
    Meller A (1953) ibid 10:213Google Scholar
  97. 97.
    Meller A (1951) TAPPI 34:171Google Scholar
  98. 98.
    Meller A (1952) ibid. 35:72Google Scholar
  99. 99.
    Meller A (1955) ibid. 38:682Google Scholar
  100. 100.
    Michie RIC et al. (1961) J Poly Sci 51:85Google Scholar
  101. 101.
    Millett MA et al. (1975) In: Wilke CR (ed) Biotechnol Bioeng Symp, no 5. Interscience, New York, p 193Google Scholar
  102. 102.
    Millett MA et al. (1976) In: Gaden EL Jr et al. (eds) Biotechnol Bioeng Symp, no 6. Interscience, New York, p 125Google Scholar
  103. 103.
    Millett MA et al. (1954) Ind Eng Chem 46:1493Google Scholar
  104. 104.
    Modi JR et al. (1963) J Appl Poly Sci 7:15Google Scholar
  105. 105.
    Moiseev YV et al. (1976) Carbohydrate Res 51:39Google Scholar
  106. 106.
    Montroll EW (1941) J Am Chem Soc 63:1215Google Scholar
  107. 107.
    Montroll EW (1940) J Chem Phys 8:721Google Scholar
  108. 108.
    Morehead FF (1950) J Text Res 20:549Google Scholar
  109. 109.
    Nelson ML (1960) J Poly Sci 43:351Google Scholar
  110. 110.
    Nelson ML, Conrad CM (1948) J Text Res 18:149Google Scholar
  111. 111.
    Nelson ML, Tripp VW (1953) J Poly Sci 10:557Google Scholar
  112. 112.
    Nesse N et al. (1977) Biotechnol Bioeng 19:323Google Scholar
  113. 113.
    Nevell TP, Upton WR (1976) Carbohydrate Res 49:163Google Scholar
  114. 114.
    Newth FH et al. (1947) J Chem Soc p 10Google Scholar
  115. 115.
    Nickerson RF, Habrle JA (1947) Ind Eng Chem 39:1507Google Scholar
  116. 116.
    Okamura SJ (1942) J Soc Chem Ind (Japan) 45:1104Google Scholar
  117. 117.
    Ott E, Spurlin HM (1954) Cellulose and cellulose derivatives. Interscience, New York, p 101Google Scholar
  118. 118.
    Pacsu E (1947) J Text Res 17:405Google Scholar
  119. 119.
    Parikh RS (1967) ibid. 37:538Google Scholar
  120. 120.
    Philip HL et al. (1947) ibid. 17:585Google Scholar
  121. 121.
    Planes RL (1978) Cell Chem Technol 12:355Google Scholar
  122. 122.
    Rånby BG (1961) J Poly Sci 53:131Google Scholar
  123. 123.
    Rånby BG, Marchessault RH (1956) ibid. 36:561Google Scholar
  124. 124.
    Reese ET (1976) In: Gaden EL Jr et al. (eds) Biotechnol Bioeng Symp, no 6. Interscience, New York, p 9Google Scholar
  125. 125.
    Richards GN (1955) Chem Inds (London) p 228Google Scholar
  126. 126.
    Rinaudo M et al. (1969) J Poly Sci C28:197Google Scholar
  127. 127.
    Roberts EJ et al. (1972) J Text Res 42:217Google Scholar
  128. 128.
    Roberts RS et al. (1980) In: Scott CD (ed) Biotechnol Bioeng Symp, no 10. Interscience, New York, p 125Google Scholar
  129. 129.
    Roseveare WE (1952) Ind Eng Chem 44:168Google Scholar
  130. 130.
    Roseveare WE et al. (1948) J Text Res 18:114Google Scholar
  131. 131.
    Rowland SP et al. (1971) J Poly Sci A-1 9:1623Google Scholar
  132. 132.
    Rowland SP et al. (1974) ibid. A-l 12:445Google Scholar
  133. 133.
    Rowland SP et al. (1969) J Text Res 39:530Google Scholar
  134. 134.
    Rowland SP et al. (1973) ibid. 43:351Google Scholar
  135. 135.
    Rowland SP, Roberts EJ (1972) J Poly Sci A-l 10:2447Google Scholar
  136. 136.
    Rowland SP, Roberts EJ (1972) ibid. A-l 10:867Google Scholar
  137. 137.
    Rowland SP, Roberts EJ (1974) ibid. A-l 12:2099Google Scholar
  138. 138.
    Rozmarin Gh (1977) Cell Chem Technol 11:523Google Scholar
  139. 139.
    Sabbagh NK, Fagerson IS (1976) J Chromatogr 120:55Google Scholar
  140. 140.
    Saeman JF (1945) Ind Eng Chem 37:43Google Scholar
  141. 141.
    Sakai Y (1965) Bull Chem Soc (Japan) 38:863Google Scholar
  142. 142.
    Sasaki T et al. (1979) Biotechnol Bioeng 21:1031Google Scholar
  143. 143.
    Schultz GV (1942) Z Phys Chem B52:50Google Scholar
  144. 144.
    Schultz GV, Lohmann HJ (1941) J Prakt Chem 157:238Google Scholar
  145. 145.
    Segal L (1975) Adv Chromatogr 12:31Google Scholar
  146. 146.
    Segal L, Loeb L (1960) J Poly Sci 42:341Google Scholar
  147. 147.
    Sharpies A (1954) ibid. 54:913Google Scholar
  148. 148.
    Sharples A (1954) ibid. 13:393Google Scholar
  149. 149.
    Sharples A (1971) In: Bikales NM, Segal L (eds) Presented at Cellulose and Cellulose Derivatives, vol 5, pt 5. Wiley, New York, p 991Google Scholar
  150. 150.
    Sharples A (1957) Trans Faraday Soc 53:1003Google Scholar
  151. 151.
    Sharples A (1954) J Poly Sci 14:95Google Scholar
  152. 152.
    Shinouda HG, Moteleb MMA (1979) J Poly Sci Polymer Chemistry Edition 17:3329Google Scholar
  153. 153.
    Szejtli J (1975) Säurehydrolyse glycosidischer Bindungen. VEB, LeipzigGoogle Scholar
  154. 154.
    Thompson DR, Grethlein HE (1979) Ind Eng Chem Prod Res Dev 18:166Google Scholar
  155. 155.
    Toyama N et al. (1977) In: Ghose TK (ed) Proc Bioconv Symp. BERCIIT Delhi, New Delhi, p 373Google Scholar
  156. 156.
    Tripp VW et al. (1958) J Text Res 28:404Google Scholar
  157. 157.
    Tsao GT (1978) Proc Biochem 10:12Google Scholar
  158. 158.
    Vaux WG (1975) AIChE Meeting, Los Angeles, California, Nov. 16–20Google Scholar
  159. 159.
    Wadhera IL, Manley RStJ (1965) J Appl Poly Sci 9:2627Google Scholar
  160. 160.
    Wegner TH et al. (1982) FRRS Inds. Wood Energy Forum 82, Washington, D.C.Google Scholar
  161. 161.
    Wenzl HFJ (1970) The chemical technology of wood. Academic Press, New YorkGoogle Scholar
  162. 162.
    Whalley E (1959) Can J Chem 37:788Google Scholar
  163. 163.
    Whalley E (1959) Trans Faraday Soc 55:798Google Scholar
  164. 164.
    Wilke CR (ed) (1975) Biotechnol Bioeng Symp, no 5. Interscience, New YorkGoogle Scholar
  165. 165.
    Wolfrom ML, Snowden JC (1938) J Am Chem Soc 60:1026Google Scholar
  166. 166.
    Yorston FH (1933) Quart Rev Forest Products Laboratory of Canada 13:16Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Liang-tseng Fan
    • 1
  • Mahendra Moreshwar Gharpuray
    • 2
  • Yong-Hyun Lee
    • 3
  1. 1.Department of Chemical EngineeringKansas State UniversityManhattenUSA
  2. 2.Group Operations, Inc.Washington, D.C.USA
  3. 3.Department of Genetic Engineering, College of Natural SciencesKyungpook National UniversityTaeguKorea

Personalised recommendations