Skip to main content

Physiological mechanisms activated by stimulation of the spinal dorsal columns

  • Conference paper

Abstract

The gate theory (9) proposes that activity in large diameter primary afferents inhibits inputs from small diameter primary afferents. As noxious sensation is transmitted by fine fibres, any method of activating large fibre inputs to the appropriate segment of the spinal cord should reduce the perception of pain. This theory has generated immense interest during the last three decades and support for the proposal has come from many lines of study. Perhaps the most striking is the observation that stimulation of the dorsal columns is useful in the clinical treatment of several painful conditions (24). Collaterals from the large diameter primary afferent fibres ascend in the dorsal columns to terminate in the gracile and caudate nuclei. It is thought that the stimulation of these fibres sets up action potentials that pass antidromically down the columns to enter the spinal cord and operate the gating mechanism described above.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basbaum AI, Wall PD (1976) Chronic changes in the response of cells in adult cat dorsal horn following partial deafferentation: the appearance of responding cells in a previously non-responsive region. Brain Res 116: 181–204

    Article  PubMed  CAS  Google Scholar 

  2. Berkley KJ, Mash DC (1978) Somatic sensory projections to the pretectum in the cat. Brain Res 158: 445–449

    Article  PubMed  CAS  Google Scholar 

  3. Cliffer KD, Burnstein R, Geisler GJ (1991) Distribution of spinothalamic, spinohypothalamic and spinotelencephalic fibers revealed by anterograde transport of PHA-L in rats. J Neurosci 11: 852–868

    PubMed  CAS  Google Scholar 

  4. Collewjin H (1978) Direction selective units in the rabbits nucleus of the optic tract. Brain Res 100: 489–508

    Article  Google Scholar 

  5. Fields HL, Basbaum AJ (1984) Endogenous pain control mechanisms. In: Wall PD, Melzack R (eds) Textbook of Pain. Churchill Livingstone, pp 142–152

    Google Scholar 

  6. Gregory KM (1985) The dendritic architecture of the visual pretectal nuclei of the rat: a study with the Golgi-Cox method. J Comp Neurol 234: 122–135

    Article  PubMed  CAS  Google Scholar 

  7. Hosobuchi Y (1980) The current status of analgesic brain stimulation. Acta Neurochirurgica (suppl) 30: 219–227

    CAS  Google Scholar 

  8. Ma W, Blomqvist A, Berkley KJ (1989) Spino-diencephalic relays through the parabrachial nucleus in the cat. Brain Res 480: 37–50

    Article  PubMed  CAS  Google Scholar 

  9. Melzack R, Wall PD (1965) Pain mechanisms: A new theory. Science 150: 971–979

    Article  PubMed  CAS  Google Scholar 

  10. Prado WA (1989) Antinociceptive effects of agonists microinjected into the anterior pretectal nucleus of the rat. Brain Res 493: 147–154

    Article  PubMed  CAS  Google Scholar 

  11. Prado WA, Roberts MHT (1985) An assessment of the antinociceptive and aversive effects of stimulating identified sites in the rat brain. Brain Res 340: 219–228

    Article  PubMed  CAS  Google Scholar 

  12. Rees H, Prado WA, Rawlings S and Roberts MHT (1987) The effects of intraperitoneal administration of antagonists and development of morphine tolerance on the antinociception induced by stimulating the APtN of the rat. Br J Pharmacol 92: 769–779

    PubMed  CAS  Google Scholar 

  13. Rees H, Roberts MHT (1987) Anterior pretectal stimulation alters the responses of spinal dorsal horn neurones to cutaneous stimulation in the rat. J Physiol 385: 415–436

    PubMed  CAS  Google Scholar 

  14. Rees H, Roberts MHT (1989) Activation of cells in the anterior pretectal nucleus by dorsal column stimulation in the rat. J Physiol 417: 361–373

    PubMed  CAS  Google Scholar 

  15. Rees H, Roberts MHT (1989) Antinociceptive effects of dorsal column stimulation in the rat: involvement of the anterior pretectal nucleus. J Physiol 417: 375–388

    PubMed  CAS  Google Scholar 

  16. Rees H, Roberts MHT (1993) The anterior pretectal nucleus: a proposed role in sensory processing. Pain 53: 121–135

    Article  PubMed  CAS  Google Scholar 

  17. Rees H, Roberts MHT, Sherwood CA (1987) Antinociceptive effects of D,L homocysteic acid into the anterior pretectal nucleus of the rat. J Physiol 394: 415–436

    Google Scholar 

  18. Reynolds DV (1969) Surgery in the rat during electrical analgesia induced by focal stimulation. Science 164: 444–445

    Article  PubMed  CAS  Google Scholar 

  19. Roberts MHT, Rees H (1986) The antinociceptive effects of stimulating the pretectal nucleus of the rat. Pain 25: 83–93

    Article  PubMed  CAS  Google Scholar 

  20. Roberts MHT, Rees H (1994) Physiological basis of spinal cord stimulation. Pain Reviews 1:184– 198

    Google Scholar 

  21. Saade NE, Atweh SF, Jabbur SJ, Wall PD (1990) Effects of lesions of the anterolateral columns and dorsolateral funiculi on self mutilation behaviour in rats. Pain 42: 313–321

    Article  PubMed  CAS  Google Scholar 

  22. Terenzi MG, Rees H, Morgan SJS, Foster GA, Roberts MHT(1991)The antinociception evoked by anterior pretectal nucleus stimulation is partly dependent upon ventrolateral medullary neurones. Pain 47: 231–239

    Article  PubMed  CAS  Google Scholar 

  23. Terenzi MG, Rees H, Roberts MHT (1992) The pontine parabrachial region mediates some of the descending inhibitory effects of stimulating the anterior pretectal nucleus. Brain Res 594: 205–214

    Article  PubMed  CAS  Google Scholar 

  24. Wall PD, Sweet WH (1967) Temporary abolition of pain in man. Science 155: 108–109

    Article  PubMed  CAS  Google Scholar 

  25. Wiberg M, Blomqvist A (1984) The spinomesencephalic tract in the cat: its cells of origin and termination pattern as demonstrated by intraaxonal transport method. Brain Res 291: 1–18

    Article  PubMed  CAS  Google Scholar 

  26. Willis WD (1989) Projections of the superficial dorsal horn to the midbrain and thalamus. In Cervero F, Bennett GJ, Headley PM (eds) Processing of sensory information in the dorsal horn of the spinal cord. Plenum Press, New York pp 217–237

    Chapter  Google Scholar 

  27. Wilson DG Rees H, Roberts MHT (1991) The antinociceptive effects of anterior pretectal stimulation in tests using thermal, mechanical and chemical noxious stimuli. Pain 44: 195–200

    Article  PubMed  CAS  Google Scholar 

  28. Yesierski RP (1988) Spinomesencephalic tract: projections from the lumbrosacral spinal cord of the rat, cat and monkey. J Comp Neurol 267: 131–146

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt

About this paper

Cite this paper

Roberts, M.H.T. (1995). Physiological mechanisms activated by stimulation of the spinal dorsal columns. In: Horsch, S., Claeys, L. (eds) Spinal Cord Stimulation II. Steinkopff. https://doi.org/10.1007/978-3-642-72527-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72527-2_1

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-72529-6

  • Online ISBN: 978-3-642-72527-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics