Molecular Imaging of Purified Na+/K+-ATPase Molecules in Canine Kidney Membranes Using Atomic Force Microscopy

  • Jose K. Paul
  • Mehdi Ganjeizadeh
  • Huiying Yu
  • Mamoru Yamaguchi
  • Kunio Takeyasu

Abstract

In order to ultimately elucidate the structure-function relationships of macromolecules, it is necessary to deduce detailed structural features by high resolution imaging in parallel to other techniques. In the case of membrane proteins this task has proven to be typically challenging due to limited availability of suitable specimen-preparation techniques and narrow applicability of conventional imaging techniques that require at least 2-dimensional crystals for high resolution. So far, a combination of electron microscopy (EM) and X-ray diffraction techniques, has been the most successful in the analysis of some of membrane proteins such as bacteriorhodopsin (7), nicotinic acetylcholine receptor (21) and Ca2+-ATPase (5). Atomic force microscopy (AFM) is emerging as a powerful tool for analyzing biological samples at molecular resolutions (3,6). Recent successful application of AFM to the channel structure of gap-junction molecules has proven the potential applicability of this technique to the structural (and, thereby, functional) analysis of membrane proteins in general (8).

Keywords

Shrinkage Macromolecule Acetylcholine Uranyl Ouabain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersen, J.P. (1993) In this volume.Google Scholar
  2. 2.
    Askari, A., Huang, W.-H., McCormick, P.W. (1983) J. Biol. Chem. 258: 3453–3460.PubMedGoogle Scholar
  3. 3.
    Bustamante, C., Keller, D. Yang, G. (1993) Curr. Opinion in Structural Biol. 3–3: 363–372.CrossRefGoogle Scholar
  4. 4.
    Catterall, W. A. (1986) Science 242: 50–61.CrossRefGoogle Scholar
  5. 5.
    Green, N. M., Stokes, D. L. (1990) J. Mol. Biol. 213: 529–538.PubMedCrossRefGoogle Scholar
  6. 6.
    Hansma, P. K., Elings, V. B., Marti, O., Bracker, C. E. (1988) Science, 242: 209–216.PubMedCrossRefGoogle Scholar
  7. 7.
    Henderson, R., Unwin, P. N. T., (1975) Nature, 257: 28–32PubMedCrossRefGoogle Scholar
  8. 8.
    Hoh, J. H., Sosinsky, G. E., Revel, J-P. & Hansma, P. K. (1993) Biophys. J. 65: 149–163.PubMedCrossRefGoogle Scholar
  9. 9.
    Ishii, T. & K. Takeyasu (1993) Proc. Natl. Acad. Sci. USA. (In Press).Google Scholar
  10. 10.
    Jorgensen, P.L. (1974) Biochim Biophys Acta 356: 36–52.PubMedCrossRefGoogle Scholar
  11. 11.
    Jorgensen, P.L. & J.P. Andersen (1988) J. Memb. Biol. 103: 95–120.CrossRefGoogle Scholar
  12. 12.
    Kim, S. Y., Wu, C. H., Beress. L. (1990) In “The Sodium Pump: Recent Developments” (Ed. J. Kaplan & P. De Weer) p.p. 505–508.Google Scholar
  13. 13.
    Maunsbach, A. B., Skriver, E., Søderholm, M., Hebert, H. In “The Na,K-Pump, Part A: Molecular Aspects, pp 39–56 (1988)Google Scholar
  14. 14.
    Mohraz. M., Smith, P.R. (1984) J. Cell Biol. 105: 1–8.CrossRefGoogle Scholar
  15. 15.
    Yang, J., Takeyasu, K., Shao, Z. (1992) FEBS Lett. 301: 173–176.PubMedCrossRefGoogle Scholar
  16. 16.
    Rees, W. A., Keller, R. W., Vesenka, J. P., Yang, G., Bustamante, C. (1993) Science, 260: 1646–1649PubMedCrossRefGoogle Scholar
  17. 17.
    Scheiner-Bobis, G., Farley, B.A. (1993) In this volume.Google Scholar
  18. 18.
    Shinogüchi, E, Ito, E, Kudo, A, Nakamura, S, Taniguchi, K. (1990) In “The Sodium Pump: Recent Developments” (Society of General Physiologists-44th Annual Symposium) pp. 363–367.Google Scholar
  19. 19.
    Skriver, E., Hebert, H., Kavéus, U., Maunsbach, A.B. (1990) In “The Sodium Pump: Recent Developments“ (Society of General Physiologists-44th Annual Symposium) pp. 243–247.Google Scholar
  20. 20.
    Takeyasu, K., T. Ishii, J.K. Paul, M.V. Lemas, M. Ganjeizadeh, H.-Y. Yu, S.-S. Wang & T. Kuwahara (1993) In this volume.Google Scholar
  21. 21.
    Unwin, N., Toyoshima, C., Kubalek, E. (1988) J. Cell Biol. 107: 1123–1138.PubMedCrossRefGoogle Scholar
  22. 22.
    Yoda, A., M. R. Rosner, P. Morrison, S. Yoda (1990) J. Gen. Physiol. 96: 74a.Google Scholar
  23. 23.
    We thank Dr. Askari for providing purified dog kidney membranes. This work was supported by grants from NIH (GM44373) and AHA (901107). M.G. is a recipient of Postdoctoral Fellowship from the American Heart Association, Ohio Affiliate. K.T. is an Established Investigator of the American Heart Association.Google Scholar

Copyright information

© Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt 1994

Authors and Affiliations

  • Jose K. Paul
    • 2
  • Mehdi Ganjeizadeh
    • 2
  • Huiying Yu
    • 2
  • Mamoru Yamaguchi
    • 1
  • Kunio Takeyasu
    • 2
  1. 1.Department of Veterinary Anatomy and Cell BiologyThe Ohio State UniversityColumbusUSA
  2. 2.Department of Med. Biochem. and Biotechnology CenterThe Ohio State UniversityColumbusUSA

Personalised recommendations