Skip to main content

Sympatho-adrenergic activation of the ischemic myocardium and its arrhythmogenic impact

  • Chapter
Myocardial Ischemia and Arrhythmia

Summary

Increased sympathetic activity has been documented in patients during acute myocardial infarction. Clinical and experimental studies have suggested that this increased sympatho-adrenergic activation may contribute to the development of lethal ventricular arrhythmias in the ischemic heart.

In acute myocardial ischemia, adrenergic stimulation of the ischemic myocardium is independent of plasma catecholamines, since local catecholamine concentrations within the ischemic myocardium surpass plasma concentrations by several orders of magnitude. Both afferent and efferent autonomic nerves are activated immediately with myocardial ischemia. Poorly perfused myocardium, however, is protected within the first few minutes of ischemia, via several mechanisms, against high local concentrations of catecholamines. Ischemia-associated metabolic alterations, such as extracellular potassium accumulation, acidosis, and especially the accumulation of adenosine reduce the transmitter release induced by central sympathetic stimulation. Furthermore, the functional neuronal amine reuptake (uptake1) prevents excessive local accumulation of noradrenaline.

With progression of myocardial ischemia to more than 10 min local nonexocytotic noradrenaline release prevails. This release is not prevented by the above-mentioned protective mechanisms and accounts for local extracellular catecholamine concentrations in the micromolar range, i.e., 100–1000 times higher than the normal plasma concentrations. It shows several features that make it possible to differentiate it from exocytotic release and to assign it to a carrier-mediated transport of noradrenaline from the sympathetic nerve ending into the synaptic cleft.This release is independent of central sympathetic activity, availability of extracellular calcium, activation of both neuronal calcium channels and protein kinase C, and is not accompanied by the release of sympathetic co-transmitters such as neuropeptide Y. It is however suppressed by blockers of uptake1 and by inhibitors of sodium-proton exchange.

Depletion of cardiac catecholamine stores by chronic sympathetic denervation effectively suppresses malignant arrhythmias induced by experimental coronary ligature. Accordingly, inhibitors of nonexocytotic noradrenaline release such as uptake1 blocking agents or sodium-proton exchange inhibitors effectively reduce the occurrence of ischemia-associated ventricular fibrillation, emphasizing the relevance of nonexocytotic noradrenaline release in myocardial ischemia.

At the postsynaptic side, catecholamines released during myocardial ischemia exert their effects by stimulating α- and β-adrenergic receptors of cardiac myocytes. During acute myocardial ischemia the responsiveness of adrenergic receptors to stimulation by catecholamines is enhanced. Several studies have demonstrated an increase in functionally coupled β-adrenergic receptor number during myocardial ischemia. Likewise, α 1-adrenergic responsivity increases in myocardium subjected to acute ischemia and contributes significantly to the arrhythmogenic effect of catecholamines. This enhanced responsiveness of adrenergic receptors during myocardial ischemia includes changes in the receptor density as well as a modulation of the coupling of the adrenergic receptors through second messengers to subcellular biochemical events in the ischemic myocardium.

In a variety of experimental studies of acute myocardial ischemia α- and β-adrenergic receptor blocking agents have been shown to attenuate the incidence of ventricular fibrillation. Furthermore, multiple clinical studies have demonstrated the effectiveness of β-adrenergic blockade in reducing the incidence of sudden cardiac death in patients after an initial myocardial infarction. At the cellular level, β-adrenergic stimulation elicits a biphasic concentration-dependent response on repolarization, which results, at least in part, from activating both calcium channels and potassium channels. Heterogeneous concentrations of beta-agonists in different regions of the myocardium during ischemia may contribute to a marked inhomogeneity of repolarization and, in turn, recovery of excitability that could form the basis for reentrant arrhythmias. Another arrhythmogenic mechanism of β-adrenergic stimulation may be the induction of delayed afterdepolarizations leading to nonreentrant activity during myocardial ischemia and reperfusion. Likewise, α 1-adrenergic stimulation can elicit delayed afterdepolarizations and triggered activity in ischemic but not in normoxic myocardium.

Apart from these direct electrophysiological effects, sympatho-adrenergic stimulation in myocardial infarction facilitates arrhythmias by indirect actions such as increasing heart rate and size of the ischemic area or inducing electrolyte changes within the myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allely MC, Brown CM (1988) The effects of POCA and TGDA on the ischaemia-induced increase in α l-adrenoceptor density in the rat left ventricle. Br J Pharm 95: 705 P

    Google Scholar 

  2. Benedict CR, Graham-Smith DG (1979) Plasma adrenaline and noradrenaline concentrations and dopamine-β-hydroxylase activity in myocardial infarction with and without cardiogenic shock. Br Heart J 42: 214–220

    Article  PubMed  CAS  Google Scholar 

  3. Benfey BG (1990) Function of myocardial α-adrenoceptors. Life Sci 46: 743–747

    Article  PubMed  CAS  Google Scholar 

  4. Bertel O, Bühler FR, Baitsch G, Ritz R, Burkart F (1982) Plasma adrenaline and noradrenaline in patients with myocardial infarction. Relationship of ventricular arrhythmias of varying severity. Chest 82: 64–68

    Article  PubMed  CAS  Google Scholar 

  5. Brodde, O.-E (1991) β 1- and β 2-Adrenoceptors in the human heart: Properties, function, and alterations in chronic heart failure. Pharmacol Rev 43: 204–242

    Google Scholar 

  6. Buja LM, Muntz KH, Rosenbaum T, Haghani Z, Buja DK, Sen A, Chien KR, Willerson JT (1985) Characterization of a potentially reversible increase in β-adrenergic receptors in isolated, neonatal rat cardiac myocytes with impaired energy metabolism. Circ Res 57: 640–645

    PubMed  CAS  Google Scholar 

  7. Butterfield MC, Chess-Williams R (1990) Enhanced a-adrenoceptor responsiveness and receptor number during global ischaemia in the Langendorff perfused rat heart. Br J Pharm 100: 641–645

    CAS  Google Scholar 

  8. Chess-Williams RG, Sheridan DJ, Broad KJ (1990) Arrhythmias and α 1-adrenoceptor binding characteristics of the guinea-pig perfused heart during ischemia and reperfusion. J Mol Cell Cardiol 22: 599–606

    Article  PubMed  CAS  Google Scholar 

  9. Corr PB, Shayman JA, Kramer JB, Kipnis RJ (1981) Increased α-adrenergic receptors in ischemic cat myocardium: A potential mediator of electrophysiological derangements. J Clin Invest 67: 1232–1236

    Article  PubMed  CAS  Google Scholar 

  10. Corr PB, Yamada KA, Witkowski FX (1986) Mechanisms controlling cardiac autonomic function and their relation to arrhythmogenesis. In: The Heart and Cardiovascular System, ed. by Fozzard HA, Jennings RB, Katz AM, and Morgan HE, Scientific Foundations, Raven Press, New York, pp. 1343–1403

    Google Scholar 

  11. Corr PB, Creer MH, Yamada KA, Saffitz JE, Sobel BE (1989) Prophylaxis of early ventricular fibrillation by inhibition of acylcarnitine accumulation. J Clin Invest 83: 927–936

    Article  PubMed  CAS  Google Scholar 

  12. Culling W, Penny WJ, Lewis MJ, Middleton K, Sheridan D J (1984) Effects of myocardial catecholamine depletion on cellular electrophysiology and arrhythmias during myocardial ischaemia and reperfusion. Cardiovasc Res 18: 675–682

    Article  PubMed  CAS  Google Scholar 

  13. Culling W, Penny WJ, Cunliffe G, Flores NA, Sheridan D J (1987) Arrhythmogenic and electrophysiological effects of alpha adrenoceptor stimulation during myocardial ischaemia and reperfusion. J Mol Cell Cardiol 19: 251–258

    Article  PubMed  CAS  Google Scholar 

  14. Dart AM, Schömig A, Dietz R, Mayer E, Kübler W (1984) Release of endogenous catecholamines in the ischemic myocardium of the rat. Part B: Effect of sympathetic nerve stimulation. Circ Res 55: 702–706

    PubMed  CAS  Google Scholar 

  15. Daugherty A, Frayn KN, Redfern WS, Woodward B (1986) The role of catecholamines in the production of ischaemia-induced ventricular arrhythmias in the rat in vivo and in vitro. Br J Pharmac 87: 265–277

    CAS  Google Scholar 

  16. Devos C, Robberecht P, Nokin P, Waelbroeck M, Clinet M, Camus JC, Beaufort P, Schoenfeld P, Christophe J (1985) Uncoupling between beta-adrenoceptors and adenylate cyclase in dog ischemic myocardium. Naunyn-Schmiedeberg’s Arch Pharmacol 331: 71–75

    Article  CAS  Google Scholar 

  17. Dietz R, Offner B, Dart AM, Schömig A (1989) Ischemia induced noradrenaline release mediates ventricular arrhythmias. In: Brachmann J, Schömig A, eds. Adrenergic mechanisms and ventricular arrhythmias in myocardial infarction. Berlin-Heidelberg-New York, Springer-Verlag, pp. 313–21

    Google Scholar 

  18. Dillon JS, Gu, XH, and Nayler WG (1988) Alpha1 adrenoceptors in the ischaemic and reperfused myocardium. J Mol Cardiol 20: 725–735

    Article  CAS  Google Scholar 

  19. Duff HJ, Lester WM, Rahmberg M (1988) Amiloride. Antiarrhythmic and electrophysiological activity in the dog. Circulation 78: 1469–1477

    Article  PubMed  CAS  Google Scholar 

  20. Duff HJ, Mitchell LB, Kavanagh KM, Manyari DE, Gillis AM, Wyse DG (1989) Amiloride. Antiarrhythmic and electrophysiologic actions in patients with inducible sustained ventricular tachycarida. Circulation 79: 1257–1263

    Article  PubMed  CAS  Google Scholar 

  21. Ebert A, Vanderbeek RB, Allgood RJ, Sabiston DC (1970) Effect of chronic cardiac denervation on arrhythmias after coronary artery ligation. Cardiovasc Res 4: 141–147

    Article  PubMed  CAS  Google Scholar 

  22. Eisenhofer G, Smolich JJ, Cox HS, Esler MD (1991) Neuronal reuptake of norepinephrine and production of dihydroxyphenylglycol by cardiac sympathetic nerves in the anesthetized dog. Circulation 84: 1354–1363

    PubMed  CAS  Google Scholar 

  23. Endoh M, Hiramoto T, Ishihata A, Takanashi M, Inui J (1991) Myocardial α1-adrenoceptors mediate positive inotropic effect and changes in phosphatidylinositol metabolism. Species differences in receptor distribution and the intracellular coupling process in mammalian ventricular myocardium. Circ Res 68: 1179–1190

    PubMed  CAS  Google Scholar 

  24. Esler M, Jennings G, Korner P, Blombery P, Sacharias N, Leonard P (1984) Measurement of total and organ-specific norepinephrine kinetics in humans. Am J Physiol 247: E21 - E28

    PubMed  CAS  Google Scholar 

  25. Felder RB, Thames MD (1981) The cardiocardiac sympathetic reflex during coronary occlusion in anesthetized dogs. Circ Res 48: 685–692

    PubMed  CAS  Google Scholar 

  26. Feola M, Arbel ER, Glick G (1977) Attenuation of cardiac sympathetic drive in experimental myocardial ischemia in dogs. Am Heart J 93: 82–88

    Article  PubMed  CAS  Google Scholar 

  27. Fiolet JWT, Baartscheer A, Schumacher CA, Coronel R, ter Welle HF (1984) The change of the free energy of ATP hydrolysis during global ischemia and anoxia in the rat heart. Its possible role in the regulation of transsarcolemmal sodium and potassium gradients. J Mol Cell Cardiol 16: 1023–1036

    Article  PubMed  CAS  Google Scholar 

  28. Freissmuth M, Schütz W, Weindlmayer-Göttel M, Zimpfer M, Spiss CK (1987) Effects of ischemia on the canine myocardial β-adrenoceptor-linked adenylate cyclase system. J Cardiovasc Pharm 10: 568–574

    Article  CAS  Google Scholar 

  29. Gilman AG (1987) G proteins: transducers of receptor-generated signals. Ann Rev Biochem 56: 615–649

    Article  PubMed  CAS  Google Scholar 

  30. Haass M, Cheng B, Richardt G, Lang RE, Schömig A (1989) Characterization and presynaptic modulation of exocytotic co-release of noradrenaline and neuropeptide Y from the guinea-pig heart. Naunyn Schmiedeberg’s Arch Pharmacol 339: 71–78

    Article  CAS  Google Scholar 

  31. Haass M, Förster C, Kranzhöfer R, Richardt G, Schömig A (1990) Role of calcium channels and protein kinase C for release of norepinephrine and neuropeptide Y. Am J Physiol 259: R925 - R930

    PubMed  CAS  Google Scholar 

  32. Heathers GP, Yamada KA, Kanter EM, Con PB (1987) Long-chain acylcarnitines mediate the hypoxia-induced increase in α l-adrenergic receptors on adult canine myocytes. Circ Res 61: 735–746

    PubMed  CAS  Google Scholar 

  33. Heathers GP, Evers AS, Corr PB (1989) Enhanced inositol trisphosphate response to α l-adrenergic stimulation in hypoxic cardiac myocytes. J Clin Invest 83: 1409–1413

    Article  PubMed  CAS  Google Scholar 

  34. Heathers GP, Lee PC, Yamada KA, Corr PB (1990) The influence of hypoxia on β-adrenergic receptors and their intracellular coupling in isolated adult canine myocytes. Coronary Artery Disease 1: 97–110

    Article  Google Scholar 

  35. Hirche HJ, Franz C, Bös, L, Bissig R, Lang R, Schramm M (1980) Myocardial extra-cellular K+ and H+ increase and noradrenaline release as possible cause of early arrhythmias following acute coronary artery occlusion in pigs. J Mol Cell Cardiol 12: 579–593

    Article  PubMed  CAS  Google Scholar 

  36. Holmgren S, Abrahamsson T, Almgren O (1985) Adrenergic innervation of coronary arteries and ventricular myocardium in the pig: Fluorescence microscopic appearance in the normal state and after ischemia. Basic Res Cardiol 80: 18–26

    Article  PubMed  CAS  Google Scholar 

  37. James TN, Isobe JH, Urthaler F (1975) Analysis of components in a hypertensive cardiogenic chemoreflex. Circulation 52: 179–92

    PubMed  CAS  Google Scholar 

  38. Karliner JS, Stevens M, Honbo N, Hoffman JIE (1989) Effects of acute ischemia in the dog on myocardial blood flow, beta receptors and adenylate cyclase activity with and without chronic beta blockade. J Clin Invest 83: 474–481

    Article  PubMed  CAS  Google Scholar 

  39. Karlsberg RP, Penkoske PA, Cryer PE, Corr PB, Roberts R (1979) Rapid activation of the sympathetic nervous system following coronary artery occlusion: relationship to infarct size, site, and haemodynamic impact. Cardiovasc Res 13: 523–531

    Article  PubMed  CAS  Google Scholar 

  40. Kohl C, Schmitz W, Scholz H, Scholz J, Toch M, Doering Y, Kalmar P (1989) Evidence for α 1-adrenoceptor-mediated increase of inositol trisphosphate in the human heart. J Cardiovasc Pharm 13: 324–327

    Article  CAS  Google Scholar 

  41. Kranzhöfer R, Haass M, Kurz T, Richardt G, Schömig A. (1991) Effect of digitalis glycosides on norepinephrine release in the heart: Dual mechanism of action. Circ Res 68: 1628–1637

    PubMed  Google Scholar 

  42. Kuroda A, Saito K, Tanaka H (1991) Alpha and beta adrenoceptors of ischemic myocardium of rats. J Mol Cell Cardiol.: 23: (suppl II) S. 44

    Article  Google Scholar 

  43. Kurz T, Schömig A (1989) Extracellular sodium and chloride depletion enhances nonexocytotic noradrenaline release induced by energy deficiency in rat heart. Naunyn Schmiedeberg’s Arch Pharmacol 340: 265–269

    Article  CAS  Google Scholar 

  44. Kurz T, Said W, De Matos Sa Rego M, Saggau W, Richardt G, Schömig A. (1990) Evidence for nonexocytotic noradrenaline release in human cardiac tissue. J Mol Cell Cardiol 22 (suppl III): PW45

    Google Scholar 

  45. Langer SZ (1981) Presynaptic regulation of the release of catecholamines. Pharmacol Rev 32: 337–362

    Google Scholar 

  46. Lathers CM, Kelliher GJ, Roberts J, Beasley AB (1978) Nonuniform cardiac sympathetic nerve discharge. Circulation 57: 1058–1065

    PubMed  CAS  Google Scholar 

  47. Lombardi F, Casalone C, Bella PD, Malfatto G, Pagani M, Malliani A (1984) Global versus regional myocardial ischaemia: differences in cardiovascular and sympathetic responses in cats. Cardiovasc Res 18: 14–23

    Article  PubMed  CAS  Google Scholar 

  48. Maisel AS, Motulsky HJ, Insel PA (1985) Externalization of β-adrenergic receptors promoted by myocardial ischemia. Science 230: 183–186

    Article  PubMed  CAS  Google Scholar 

  49. Maisel AS, Motulsky HJ, Ziegler MG, Insel PA (1987) Ischemia-and agonist-induced changes in a-and ß-adrenergic receptor traffic in guinea pig hearts. Am J Physiol 253 (Heart Circ Physiol 22): H1159 - H1166

    PubMed  CAS  Google Scholar 

  50. Maisel AS, Ransnäs LA, Insel PA (1990) α-Adrenergic receptors and the GS protein in myocardial ischemia and injury. In: Adrenergic Mechanisms in Myocardial Ischemia, ed. by G Heusch and J Ross Jr., pp. 48–56, Steinkopff Verlag Darmstadt

    Google Scholar 

  51. Martins JB, Kerber RE, Marcus ML, Laughlin DL, Levy DM (1980) Inhibition of adrenergic neurotransmission in ischaemic regions of the canine left ventricle. Cardiovasc Res 14: 116–124

    Article  PubMed  CAS  Google Scholar 

  52. Minisi AJ, Thames MD (1991) Activation of cardiac sympathetic afferents during coronary occlusion. Evidence for reflex activation of sympathetic nervous system during transmural myocardial ischemia in the dog. Circulation 84: 357–367

    PubMed  CAS  Google Scholar 

  53. Minneman KP (1988) Alpha1-adrenergic receptor subtypes, inositol phosphates, and sources of cell Ca++ Pharmacol Rev 40: 87–119

    PubMed  CAS  Google Scholar 

  54. Miyazaki T, Zipes DP (1990) Presynaptic modulation of efferent sympathetic and vagal neurotransmission in the canine heart by hypoxia, high K+, low pH, and adenosine. Possible relevance to ischaemia-induced denervation. Circ Res 66: 289–301

    PubMed  CAS  Google Scholar 

  55. Mukherjee A, Hogan M, McCoy K, Buja LM, Willerson JT (1980) Influence of experimental myocardial ischemia on alphas-adrenergic receptors. Circulation 64 (suppl III): 149

    Google Scholar 

  56. Mukerjee A, Wong TM, Buja LM, Lefkowitz RJ (1979) Beta adrenergic and muscarinic cholinergic receptors in canine myocardium. J Clin Invest 64: 1423–1428

    Article  Google Scholar 

  57. Muntz KH, Olson EG, Lariviere GR, D’Souza S, Mukherjee A, Willerson JT, Buja LM (1984) Autoradiographic characterization of beta adrenergic receptors in coronary blood vessels and myocytes in normal and ischemic myocardium of the canine heart. J Clin Invest 73: 349–357

    Article  PubMed  CAS  Google Scholar 

  58. Neely BH, Hageman GR (1990) Differential cardiac sympathetic activity during acute myocardial ischemia. Am J Physiol 258: H1534 - H1541

    PubMed  CAS  Google Scholar 

  59. Ohyanagi M, Matsumori Y, Iwasaki T (1990) ß-Adrenergic receptors in ischemic and nonischemic canine myocardium: Relation to ventricular fibrillation and effects of pretreatment with propranolol and hexamethonium. J Cardiovasc Pharm 11: 107–114

    Article  Google Scholar 

  60. Pantridge JF, Webb SW, Adgey AAJ (1981) Arrhythmias in the first hours after myocardial infarction. Prog Cardiovasc Dis 23: 265–278

    Article  PubMed  CAS  Google Scholar 

  61. Richardt G, Waas W, Kranzhöfer R, Mayer E, Schömig A (1987) Adenosine inhibits exocytotic release of endogenous noradrenaline in the rat heart: A protective mechanism in early myocardial ischemia. Circ Res 61: 117–123

    PubMed  CAS  Google Scholar 

  62. Richardt G, Waas W, Kranzhöfer, Mayer R, Schömig A (1989) Interaction between the release of adenosine and noradrenaline during sympathetic stimulation: A feed-back mechanism in rat heart. J Mol Cell Cardiol 21: 269–277

    Article  PubMed  CAS  Google Scholar 

  63. Richardt G, Kranzhöfer R, Blessing R, Neumann J, Kurz T, Rauch B, Schömig A (1990) Systemic and coronary venous noradrenaline concentrations during PTCA. Circulation 82 (suppl III): III-456

    Google Scholar 

  64. Schömig A, Dietz R, Strasser R, Dart AM, Kübler W (1982) Noradrenaline release and inactivation in myocardial ischemia. In: Caldarera CM, Harris P, eds. Advances in Studies on Heart Metabolism. Bologna, CLUEB, pp. 239–244

    Google Scholar 

  65. Schömig A, Dart AM, Dietz R, Mayer E, Kübler W (1984) Release of endogenous catecholamines in the ischemic myocardium of the rat. Part A. Locally mediated release. Circ Res 55: 689–701

    PubMed  Google Scholar 

  66. Schömig A, Dart AM, Dietz R, Mayer E, Kübler W (1985a) Paradoxical role of neuronal uptake for the locally mediated release of endogenous noradrenaline in the ischemic myocardium. J Cardiovasc Pharmacol. 7 (suppl 5): S40 - S44

    Article  Google Scholar 

  67. Schömig A, Ness G, Mayer E, Katus H, Dietz R (1985b) Sympathetic activity in patients with acute myocardial infarction before and after intracoronary thrombolytic therapy. Eur Heart J 5 (suppl 1): 39

    Google Scholar 

  68. Schömig A, Fischer S, Kurz T, Richardt G, Schömig E (1987) Nonexocytotic release of endogenous noradrenaline in the ischemic and anoxic heart: mechanism and metabolic requirements. Circ Res 60: 194–205

    PubMed  Google Scholar 

  69. Schömig A, Kurz T, Richardt G, Schömig E (1988) Neuronal sodium homeostasis and axoplasmic amine concentration determine calcium-independent noradrenaline release in normoxic and ischemic rat heart. Circ Res 63: 214–226

    PubMed  Google Scholar 

  70. Schömig A, Beyer Th, Rehmert G (1989) Amiloride and analogues suppress noradrenaline release and malignant arrhythmias in the ischemic rat heart. Circulation 80 (suppl II): 202

    Google Scholar 

  71. Schömig A, Kurz T, Miao L, Blessing R, Saggau W (1991) Noradrenaline release in human atrial tissue during normoxia and anoxia: Role of calcium, calcium channels and protein kinase C. J Mol Cell Cardiol 23 (suppl V): 60

    Google Scholar 

  72. Schumann HJ, Wagner J, Knorr A, Reidemeister JC, Sadony V, Schramm G (1978) Demonstration in human atrial preparations of a-adrenoceptors mediating positive isotropic effects. Naunyn-Schmiedeberg’s Arch. Pharmacol 302: 333–336

    CAS  Google Scholar 

  73. Sethi V, Haider B, Ahmed SS, Oldewurtel HA, Regan TJ (1973) Influence of beta blockade and chemical sympathectomy on myocardial function and arrhythmias in acute ischaemia. Cardiovasc Res 7: 740–747

    Article  PubMed  CAS  Google Scholar 

  74. Seyfarth M, Feng Y, Hagl S, Sebening F, Richardt G, Schömig, A (1993) Effect of myocardial ischemia on stimulation-evoked noradrenaline release. Modulated neurotransmission in rat, guinea pig, and human cardiac tissue. Circ Res 73: 496–502

    PubMed  CAS  Google Scholar 

  75. Shahab L, Wollenberger A, Haase M, Schiller U (1969) Noradrenalinabgabe aus dem Hundeherzen nach vorübergehender Okklusion einer Koronararterie. Acta Biol Med Germ 22: 135–143

    PubMed  CAS  Google Scholar 

  76. Sheridan DJ, Penkoske PA, Sobel BE, Corr PB (1980) α-Adrenergic contributions to dysrhythmia during myocardial ischemia and reperfusion in cats. J Clin Invest 65: 161–171

    Article  PubMed  CAS  Google Scholar 

  77. Sibley DR, Benovic JL, Caron MG, Lefkowitz RJ (1987) Regulation of transmembrane signaling by receptor phosphorylation. Cell 48: 913–922

    Article  PubMed  CAS  Google Scholar 

  78. Stazewska-Barczak J, Ferreira SH, Vane JR (1976) An excitatory nocioceptive cardiac reflex elicited by bradykinin and potentiated by prostaglandins and myocardial ischemia. Cardiovasc Res 10: 314–327

    Article  Google Scholar 

  79. Strange RC, Rowe MJ, Oliver MF (1978) Lack of relation between venous plasma total catecholamine concentration and ventricular arrhythmias after acute myocardial infarction. Br Med J 2: 921–922

    Article  PubMed  CAS  Google Scholar 

  80. Strasser RH, Marquetant R(1990) Supersensitivity of the adenylyl cyclase system in acute myocardial ischemia: Evaluation of three independent mechanisms. In: Adrenergic Mechanisms in Myocardial Ischemia, ed. by G Heusch and J Ross Jr, pp. 67–78, Steinkopff Verlag Darmstadt

    Google Scholar 

  81. Strasser RH, Krimmer J, Marquetant R (1988) Regulation of ß-adrenergic receptors: Impaired desensitization in myocardial ischemia. J Cardiovasc Pharm 12 (suppl. 1): S15 - S24

    Article  CAS  Google Scholar 

  82. Strasser RH, Krimmer J, Braun-Dullaeus R, Marquetant R, Kubler W (1990) Dual sensitization of the adrenergic system in early myocardial ischemia: Independent regulation of the β-adrenergic receptors and the adenylyl cyclase. J Mol Cell Cardiol 22: 1405–1423

    Article  PubMed  CAS  Google Scholar 

  83. Susanni E, Manders WT, Knight DR, Vatner DE, Vatner SF, Homcy CJ (1989) One hour of myocardial ischemia decreases the activity of the stimulatory guanine nucleotide regulatory protein Gs. Circ Res 65: 1145–1150

    PubMed  CAS  Google Scholar 

  84. Sytkowski PA, Kannel WB, D’Agostino RB (1990) Changes in risk factors and the decline in mortality from cardiovascular disease: the Framingham Heart Study. N Engl J Med 322: 1635–1641

    Article  PubMed  CAS  Google Scholar 

  85. Tobise K, Abe M, Onodera S (1991) Prolonged period of global ischemia causes no change in the GTP binding proteins in the isolated perfused rat heart. Eur J Pharmacol 208: 183–187

    Article  PubMed  CAS  Google Scholar 

  86. Trendelenburg U (1989) The dynamics of adrenergic nerve endings. In: Brachmann J, Schömig A, eds. Adrenergic system and Ventricular Arrhythmias in Myocardial Infarction. New York, Berlin, Heidelberg, Springer Verlag, pp. 53–60

    Google Scholar 

  87. Uchida Y, Murao S (1975) Acid-induced excitation of afferent cardiac sympathetic nerve fibers. Am J Physiol 228: 27–33

    PubMed  CAS  Google Scholar 

  88. van den Ende R, Batink HD, Pfaffendorf M, van Zwieten PA (1991) Discrepancies between inotropic responses and β-adrenoceptor characteristics after global ischemia in isolated hearts. J Cardiovasc Pharmacol 18: 679–686

    Article  PubMed  Google Scholar 

  89. Vatner DE, Knight DR, Shen YT, Thomas JX, Homcy CJ, Vatner SF (1988) One hour of myocardial ischemia in conscious dogs increases β-adrenergic receptors, but decreases adenylate cyclase activity. J Mol Cell Cardiol 20: 75–82

    Article  PubMed  CAS  Google Scholar 

  90. Vatner DE, Young MA, Knight DR, Vatner SF (1990) β-Receptors and adenylate cyclase: comparison of nonischemic, ischemic, and postmortem tissue. Am J Physiol 258 (Heart Circ. Physiol.): H140–H144

    PubMed  CAS  Google Scholar 

  91. Verrier RL, Thompson PL, Lown B (1974) Ventricular vulnerability during sympathetic stimulation: role of heart rate and blood pressure. Cardiovasc Res 8: 602–610

    Article  PubMed  CAS  Google Scholar 

  92. Winkler H, Apps DK, Fischer-Colbrie R (1986) The molecular function of adrenal chromaffin granules: Established facts and unresolved topics. Neurosci 18: 261–290

    Article  CAS  Google Scholar 

  93. Wollenberger A, Shahab L (1965) Anoxia-induced release of noradrenaline from the isolated perfused heart. Nature 207: 88–89

    Article  PubMed  CAS  Google Scholar 

  94. Yusuf S, Peto R, Lewis J, Collins R, Sleight P (1985) Betablockade during and after myocardial infarction: An overview of the randomized trials. Prog Cardiovasc Dis 27: 335–371

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt

About this chapter

Cite this chapter

Schömig, A., Richardt, G., Kurz, T. (1994). Sympatho-adrenergic activation of the ischemic myocardium and its arrhythmogenic impact. In: Zehender, M., Meinertz, T., Just, H. (eds) Myocardial Ischemia and Arrhythmia. Steinkopff. https://doi.org/10.1007/978-3-642-72505-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72505-0_9

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-72507-4

  • Online ISBN: 978-3-642-72505-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics