Skip to main content

Effects of the sympathetic nervous system on conduction and refractoriness in normal and ischemic myocardium

  • Chapter
Myocardial Ischemia and Arrhythmia
  • 782 Accesses

Summary

In the normal ventricle conduction velocity is hardly influenced by sympathetic stimulation, whereas refractory periods shorten. The projection of sympathetic nerves to the ventricles is inhomogeneous and variable between individuals of the same species. Therefore, the effects of sympathetic stimulation on electrophysiological parameters are inhomogeneous as well. This inhomogeneity of effects may add up to or mitigate basic dispersion. It is not known whether electrical instability caused by sympathetic stimulation in the normal heart can be large enough to initiate life-threatening arrhythmias.

During acute ischemia there are almost immediate changes in extracellular K+ concentration. Conduction velocity starts to decrease after 2 to 3 min of ischemia; refractory periods increase even earlier. Both factors increase the chances for reentrant arrhythmias. Dispersion in refractory periods develops over the ischemic border between the normal and ischemic myocardium, but also within the central ischemic area. This was assessed with measurement of local fibrillation intervals, because refractory periods cannot be measured at more than one site at a time. Dynamic conditions such as acute ischemia or sympathetic stimulation require multiple simultaneous measurements, because parameters — for instance, diastolic threshold for excitation — change continuously.

Sympathetic stimulation increases conduction velocity during acute ischemia. In itself, this would be an anti-arrhythmogenic factor. Local fibrillation intervals are prolonged by sympathetic stimulation, whereas they are shortened in the normal heart. This indicates that sympathetic stimulation provokes opposite effects on refractoriness in normal and ischemic myocardium. Such an effect would increase the propensity to reentrant arrhythmias, especially during mild ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abildskov JA (1976) Adrenergic effects on the QT interval of the electrocardiogram. Am Heart J 92: 210–216

    PubMed  CAS  Google Scholar 

  2. Angelakos ET, King MP, Millard RW (1969) Regional distribution of catecholamines in the hearts of various species. Ann NY Acad Sci 156: 219–240

    PubMed  CAS  Google Scholar 

  3. Barber MJ, Mueller TM, Davies BG, Zipes DP (1984) Phenol topically applied to canine left ventricular epicardium interrupts sympathetic but not vagal afferents. Circ Res 55: 532–544

    PubMed  CAS  Google Scholar 

  4. Barber MJ, Mueller TM, Henry DP, Felton SY, Zipes DP (1983) Transmural myocardial infarction in the dog produces sympathectomy in non-infarcted myocardium. Circulation 67: 787–796

    PubMed  CAS  Google Scholar 

  5. Boachie-Ansah G, Kane KA, Parratt JR (1989) Cardiac electrophysiological effects of isoprenaline, phenylephrine, and noradrenaline on normal and mildly “ischemic” sheep Purkinje fibers. J Cardiovasc Pharmacol 13: 291–298

    PubMed  CAS  Google Scholar 

  6. Boas EP (1942) Some immediate causes of cardiac infarction. Am Heart J 23: 1–15

    Google Scholar 

  7. Burgess MJ, Haws CW (1982) Effects of sympathetic stimulation on refractory periods of ischemic canine ventricular myocardium. J Electrocardiol 15: 1–18

    PubMed  CAS  Google Scholar 

  8. Capucci A, Fabius MAW, Coronel R, Janse MJ (1984) Variability of refractory periods in acute ischemia as a possible mechanism of early arrhythmias. New Trends Arrhyth 1: 7–17

    Google Scholar 

  9. Carlsson L (1987) Mechanism of local noradrenaline release in acute myocardial ischemia. Acta Physiol Scand 129, Suppl 559

    Google Scholar 

  10. Coronel R, Fiolet JWT, Wilms-Schopman FJG, Schaapherder AFM, Johnson TA, Gettes LS, Janse MJ (1988) Distribution of extracellular potassium and its relation to electrophysiologic changes during acute myocardial ischemia in the isolated perfused porcine heart. Circulation 77: 1125–1138

    PubMed  CAS  Google Scholar 

  11. Dahlström A, Fuxe K, Mya-Tu M, Zetterström BEM (1965) Observations on adrenergic innervation in the dog heart. Am J Physiol 209: 689–692

    PubMed  Google Scholar 

  12. Dukes ID, Vaughan Williams EM (1984) Effects of selective α1-, α2-, β1- and β2-adrenoceptor stimulation on potentials and contractions in the rabbit heart. J Physiol 355: 523–546

    PubMed  CAS  Google Scholar 

  13. Elharrar V, Foster PR, Jirak TL, Gaum WE, Zipes DP (1977) Alterations in canine myocardial excitability during ischemia. Circ Res 40: 98–105

    PubMed  CAS  Google Scholar 

  14. Ellingsen O, Vengen OA, Kjeldsen SE, Eide I, Ilebekk A (1987) Myocardial potassium uptake and catecholamine release during cardiac sympathetic nerve stimulation. Cardiovasc Res 21: 892–901

    PubMed  CAS  Google Scholar 

  15. Eyster JAE, Meek WJ (1921) The origin and conduction of the heart beat. Physiol Rev 1: 1–43

    Google Scholar 

  16. Felder RB, Thames MD (1979) The cardiocardiac sympathetic reflex during coronary occlusion in anesthetized dogs. Circ Res 48: 685–692

    Google Scholar 

  17. Felder RB, Thames MD (1981) Interaction between cardiac receptors and sinoaortic baroreceptors in the control of efferent cardiac sympathetic nerve activity during myocardial ischemia in dogs. Circ Res 45: 728–736

    Google Scholar 

  18. Gaide MS, Myerburg RJ, Cameron JS, Bassett AL (1984) Effects of sympathetic stimulation on ventricular refractory periods in cats with acute coronary ligation. Experientia 40: 694–695

    PubMed  CAS  Google Scholar 

  19. Garcia-Calvo R, Chorro FJ, Sendra M, Alberola A, Sanchis J, Navarro J, Valentin V, López-Marino V, Such L (1992) The effects of selective stellate ganglion manipulation on ventricular refractoriness and excitability. PACE 15: 1492–1503

    PubMed  CAS  Google Scholar 

  20. Geis WP, Kaye MP (1968) Distribution of sympathetic fibers in the left ventricular epicardial plexus of the dog. Circ Res 23: 165–170

    PubMed  CAS  Google Scholar 

  21. Gettes LS, Cascio WE (1992) Effect of acute ischemia on cardiac electrophysiology. In: Fozzard HA, Jennings RB, Haber E, Katz AM, Morgan HE (eds) The Heart and Cardiovascular System, 2nd edition. Raven Press, New York, pp. 2021–2054

    Google Scholar 

  22. Giotti A, Ledda F, Mannaioni PF (1973) Effects of noradrenaline and isoprenaline, in combination with a-and n-receptor blocking substances, on the action potential of cardiac Purkinje fibers. J. Physiol 229: 99–113

    PubMed  CAS  Google Scholar 

  23. Godin D, Campeau H, Nadeau R, Cardinal R, De Champlain J (1985) Catecholamine release and ventricular arrhythmias during coronary occlusion and reperfusion in the dog. Can J Physiol Pharmacol 63: 1088–1095

    PubMed  CAS  Google Scholar 

  24. Green JR, Korovetz MJ, Shanklin DR, Devito JJ, Taylor WJ (1969) Sudden unexpected death in three generations. Arch Int Med 124: 359–363

    Google Scholar 

  25. Haase M, Schiller U (1969) Zur zeitlichen Parallelität der Aktivität ektopischer Schrittmacher and dem Eintritt von Kammerflimmern nach Ligatur eines Hauptkoronarastes beim Hund. Acta Biol Med Germ 23: 413–422

    Google Scholar 

  26. Han J, Garcia de Jalon P, Moe GK (1964) Adrenergic effects on ventricular vulnerability. Circ Res 14: 516–525

    PubMed  CAS  Google Scholar 

  27. Han J, Moe GK (1964) Nonuniform recovery of excitability in ventricular muscle. Circ Res 14: 44–60

    PubMed  CAS  Google Scholar 

  28. Harris AL, Otero H, Bocage AJ (1971) The induction of arrhythmias by sympathetic activity before and after occlusion of coronary artery in the canine heart. J Electrocardiol 4: 34–43

    PubMed  CAS  Google Scholar 

  29. Haws CW, Burgess MJ (1978) Effects of bilateral and unilateral stellate stimulation on canine refractory periods at sites of overlapping innervation. Circ Res 42: 195–198

    PubMed  CAS  Google Scholar 

  30. Haynes SG, Eaker ED, Feinleib M (1983) Spouse behavior and coronory heart disease in men: prospective results from the Framingham heart study. Am J Epidemiol 118: 1–22

    PubMed  CAS  Google Scholar 

  31. Hirche H, Bös FL, Bissig R, Lang R, Schramm M (1980) Myocardial extracellular K+ and H+ increase and noradrenaline release as possible cause of early arrhythmias following acute coronary artery occlusion in pigs. J Mol Cell Cardiol 12: 579–593

    PubMed  CAS  Google Scholar 

  32. Hjalmarson A, Gilpin EA, Nicod P, Dittrich H, Henning H, Engler R, Blacky R, Smith SC, Ricou F, Ross J (1989) Differing circadian patterns of symptom onset in subgroups of patients with acute myocardial infarction. Circulation 80: 267–275

    PubMed  CAS  Google Scholar 

  33. Holmgren S, Abrahamsson T, Almgren O (1985) Adrenergic innervation of coronary arteries and ventricular myocardium in the pig: fluorescence microscopic appearance in the normal state and after ischemia. Basic Res Cardiol 80: 18–26

    PubMed  CAS  Google Scholar 

  34. Horacek T, Neumann M, Von Mutius S, Budden M, Meesmann W (1984) Non-homogeneous electrophysiological changes and the bimodal distribution of early ventricular arrhythmias during acute coronary artery occlusion. Basic Res Cardiol 79: 649–667

    PubMed  CAS  Google Scholar 

  35. Inoue H, Zipes DP (1987) Changes in atrial and ventricular refractoriness and in atrioventricular nodal conduction produced by combinations of vagal and sympathetic stimulation that result in a constant spontaneous cycle length. Circ Res 60: 942–951

    PubMed  CAS  Google Scholar 

  36. Inoue H, Zipes DP (1988) Time course of denervation of efferent sympathetic and vagal nerves after occlusion of the coronary artery in the canine heart. Circ Res 62: 1110–1120

    Google Scholar 

  37. Jacobowitz D, Cooper T, Barner HB (1967) Histochemical and chemical studies of the location of adrenergic and cholinergic nerves in normal and denervated cat hearts. Circ Res 20: 289–298

    PubMed  CAS  Google Scholar 

  38. Janse MJ (1992) Reentry rhythms. In: Fozzard HA, Jennings RB, Haber E, Katz AM, Morgan HE (eds) The Heart and Cardiovascular System, 2nd edition. Raven Press, New York, pp 2055–2094

    Google Scholar 

  39. Janse MJ, Capucci A, Coronel R, Fabius MAW (1985) Variability of excitability in the normal canine and the ischaemic porcine heart. Eur Heart J 6 (Suppl. D): 41–52

    PubMed  Google Scholar 

  40. Janse MJ, Schwartz PJ, Wilms-Schopman F, Peters RJG, Durrer D (1985) Effects of unilateral stellate ganglion stimulation and ablation on electrophysiological changes induced by acute myocardial ischemia in dogs. Circulation 72: 585–595

    PubMed  CAS  Google Scholar 

  41. Janse MJ, Van Capelle FJL, Morsink H, Kléber AG, Wilms-Schopman FJG, Cardinal R, Nauman d’Alnoncourt C, Durrer D (1980) Flow of “injury” current and patterns of excitation during early ventricular arrhythmias in acute regional myocardial ischemia in isolated porcine and canine hearts. Evidence for 2 different arrhythmogenic mechanisms. Circ Res 47: 151–165

    PubMed  CAS  Google Scholar 

  42. Janse MJ, Wilms-Schopman F, Opthof T (1990) Mechanism of antifibrillatory action of Org 7797 in regionally ischemic pig heart. J Cardiovasc Pharmacol 15: 633–643

    PubMed  CAS  Google Scholar 

  43. Janse MJ, Wit AL (1989) Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol Rev 69: 1049–1169

    PubMed  CAS  Google Scholar 

  44. Kaplinsky E, Ogawa S, Balke W, Dreifus LS (1979) Two periods of early ventricular arrhythmia in the canine acute myocardial infarction model. Circulation 60: 397–403

    PubMed  CAS  Google Scholar 

  45. Kass RS, Wiegers SE (1982) The ionic base of concentration related effects of noradrenaline on the action potential of calf Purkinje fibers. J Physiol 322: 541–558

    PubMed  CAS  Google Scholar 

  46. Kléber AG, Janse MJ, Wilms-Schopman FJG, Wilde AAM, Coronel R (1986) Changes in conduction velocity during acute ischemia in ventricular myocardium of the isolated porcine heart. Circulation 73: 189–198

    PubMed  Google Scholar 

  47. Kléber AG, Riegger CB, Janse MJ (1987) Electrical uncoupling and increase of extracellular resistance after induction of ischemia in isolated, arterially perfused rabbit papillary muscle. Circ Res 61: 271–279

    PubMed  Google Scholar 

  48. Kodama I, Wilde AAM, Janse MJ, Durrer D, Yamada K (1984) Combined effects of hypoxia, hyperkalemia and acidosis on membrane action potential and excitability of guinea-pig ventricular muscle. J Mol Cell Cardiol 16: 247–259

    PubMed  CAS  Google Scholar 

  49. Kolman BS, Verrier RL, Lown B (1976) Effect of vagus nerve stimulation upon excitability of the canine ventricle. Am J Cardiol 37: 1041–1045

    PubMed  CAS  Google Scholar 

  50. Kralios FA, Martin L, Burgess MJ, Millar K (1975) Local ventricular repolarization changes due to sympathetic nerve-branch stimulation. Am J Physiol 228: 1621–1626

    PubMed  CAS  Google Scholar 

  51. Kuo CS, Munakata K, Pratap Reddy C, Surawicz B (1983) Characteristics and possible mechanisms of ventricular arrhythmias dependent on the dispersion of action potential durations. Circulation 67: 1356–1367

    PubMed  CAS  Google Scholar 

  52. Lammers WJEP, Allessie MA, Rensma PL, Schalij MJ (1986) The use of fibrillation cycle length to determine spatial dispersion in electrophysiologic properties used to characterize the underlying mechanism of fibrillation. New Trends Arrhyth 2: 109–112

    Google Scholar 

  53. Lammers WJEP, Schalij MJ, Kirchhof CJHJ, Allessie MA (1990) Quantification of spatial inhomogeneity in conduction and initiation of reentrant atrial arrhythmias. Am J Physiol 259: H1254 - H1263

    PubMed  CAS  Google Scholar 

  54. Lathers CM, Kelliher GJ, Roberts J, Beasley AB (1978) Nonuniform cardiac sympathetic nerve discharge. Mechanism for coronary artery occlusion and digitalis-induced arrhythmias. Circulation 57: 1058–1065

    PubMed  CAS  Google Scholar 

  55. Lown B (1986) Clinical studies of the relation between behavioral factors and sudden cardiac death. In: Lown B, Malliani A, Prodoscimi M (eds) Neural Mechanisms and Cardiovascular Disease. Liviana Press, Padova, pp. 495–512

    Google Scholar 

  56. Lown B, Temte JV, Reich P, Gaughan C, Regestein Q, Hai H (1976) Basis for recurring ventricular fibrillation in the absence of coronary heart disease and its management. N Engl J Med 294: 623–629

    PubMed  CAS  Google Scholar 

  57. Lown B, Verrier RL, Rabinowitz SH (1977) Neural and psychologic mechanisms and the problem of sudden cardiac death. Am J Cardiol 39: 890–902

    PubMed  CAS  Google Scholar 

  58. MacLeod DP, Prasad K (1969) Influence of glucose on the transmembrane action potential of papillary muscle. J Gen Physiol 53: 792–815

    PubMed  CAS  Google Scholar 

  59. Mating AM, Moran NC (1957) Ventricular arrhythmias induced by sympathomimetic amines in unanesthetized dogs following coronary artery occlusion. Circ Res 5: 409–413

    Google Scholar 

  60. Malliani A, Schwartz PJ, Zanchetti A (1980) Neural mechanisms in life-threatening arrhythmias Am Heart J 100: 705–715

    CAS  Google Scholar 

  61. Martins JB, Zipes DP (1980) Effects of sympathetic and vagal nerves on recovery properties of the endocardium and epicardium of the canine left ventricle. Circ Res 46: 100–110

    PubMed  CAS  Google Scholar 

  62. Mauck HP, Hockman CH (1967) Central nervous system mechanisms mediating cardiac rate and rhythm Am Heart J 74: 96–109

    Google Scholar 

  63. McDonald TF, MacLeod DP (1972) Effects of manganese, glucose and isoprenaline on the action potential of anoxic ventricular muscle. Naunyn Schmiedebergs Arch Pharmacol 275: 169–181

    PubMed  CAS  Google Scholar 

  64. McRae JR, Wagner GS, Rogers MC, Canent RV (1974) Paroxysmal familial ventricular fibrillation. J Pediatr 84: 515–518

    PubMed  CAS  Google Scholar 

  65. Millar CK, Kralios FA, Lux RL (1985) Correlation between refractory periods and activation-recovery intervals from electrograms. Effects of rate and adrenergic interventions. Circulation 72: 1372–1379

    PubMed  CAS  Google Scholar 

  66. Millar CK, Lux RL, Wyatt RF (1976) Ischemia induced ventricular conduction delay: reversal by cardiac nerve stimulation. Circulation 53/54: II-131

    Google Scholar 

  67. Minisi AJ, Thames MD (1991) Activation of cardiac sympathetic afferents during coronary occlusion, Evidence for reflex activation of sympathetic nervous system during transmural myocardial ischemia in the dog. Circulation 84: 357–367

    PubMed  CAS  Google Scholar 

  68. Miyazaki T, Zipes DP (1990) Presynaptic modulation of efferent sympathetic and vagal transmission in the canine heart by hypoxia, high K+, low pH, and adenosine. Possible relevance to ischemia-induced denervation. Circ Res 66: 289–301

    PubMed  CAS  Google Scholar 

  69. Moore EN, Spear JF, Fisch C (1993) “Supernormal” conduction and excitability. J Cardiovasc Electrophysiol 4: 320–337

    PubMed  CAS  Google Scholar 

  70. Mulcahy D, Cunningham D, Crean P, Wright C, Keegan J, Quyyumi, Park A, Fox K (1988) Circadian variation of total ischaemic burden and its alteration with anti-anginal agents. The Lancet 2: 755–759

    CAS  Google Scholar 

  71. Muller JE, Ludmer PL, Willich SN, Toiler GH, Aylmer G, Klangos I, Stone PH (1987) Circadian variation in the frequency of sudden death. Circulation 75: 131–138

    PubMed  CAS  Google Scholar 

  72. Nattel S, Euler DE, Spear JF, Moore EN (1981) Autonomic control of ventricular refractoriness. Am J Physiol 241: 878–882

    Google Scholar 

  73. Ono K, Kiyosue T, Arita M (1989) Isoproterenol, DBcAMP and forskolin inhibit cardiac sodium current. Am J Physiol 256: C1131 - C1137

    PubMed  CAS  Google Scholar 

  74. Opthof T, Coronel R, Shander GS, Wilms-Schopman FJG, Janse MJ (1992) Electrophysiological changes and ventricular fibrillation in acute regional ischemia in the porcine heart: the concept of wavelength. J Cardiovasc Electrophysiol 3: 128–140

    Google Scholar 

  75. Opthof T, Coronel R, Vermeulen JT, Verberne HJ, Van Capelle FJL, Janse MJ (1993) Dispersion of refractoriness in normal and ischaemic canine ventricle: effects of sympathetic stimulation. Cardiovasc Res 27: 1954–1960

    PubMed  CAS  Google Scholar 

  76. Opthof T, Dekker LRC, Coronel R, Vermeulen JT, Van Capelle FJL, Janse MJ (1993) Interaction of sympathetic and parasympathetic nervous system on ventricular refractoriness assessed by local fibrillation intervals in the canine heart. Cardiovascular Res 27: 753–759

    CAS  Google Scholar 

  77. Opthof T, Ramdat Misier AR, Coronel R, Vermeulen JT, Verberne HJ, Frank RJG, Moulijn AC, Van Capelle FJL, Janse MJ (1991) Dispersion of refractoriness in canine ventricular myocardium. Effect of sympathetic stimulation. Circ Res 68: 1204–1215

    PubMed  CAS  Google Scholar 

  78. Opthof T, Ramdat Misier AR, Verberne HJ, Vermeulen JT, Coronel R, Van Capelle FJL, Janse MJ (1991) The effects of sympathetic stimulation and norepinephrine infusion on refractoriness in canine myocardium. Eur Heart J 12 (Abstr. Suppl.): 113

    Google Scholar 

  79. Penny WJ (1984) The deleterious effects of myocardial catecholamines on cellular electrophysiology and arrhythmias during ischaemia and reperfusion. Eur Heart J 5: 960–973

    PubMed  CAS  Google Scholar 

  80. Pogwizd SM, Corr PB (1987) Reentrant and non-reentrant mechanisms contribute to arrhythmogenesis during early myocardial ischemia: results using three-dimensional mapping. Circ Res 61: 352–371

    PubMed  CAS  Google Scholar 

  81. Priori SG, Corr PB (1990) Mechanisms underlying early and delayed afterdepolarizations induced by catecholamines. Am J Physiol 258: H1796–1805

    PubMed  CAS  Google Scholar 

  82. Quadbeck J, Reiter M (1975) Adrenoceptors in cardiac ventricular muscle and changes in duration of action potential caused by noradrenaline and isoprenaline. NaunynSchmiedebergs Arch Pharmacol 288: 403–414

    CAS  Google Scholar 

  83. Randall WC, Priola DV, Ulmer RH (1963) A functional study of cardiac sympathetic nerves. Am J Physiol 205: 1227–1231

    PubMed  CAS  Google Scholar 

  84. Rensma PL, Allesie MA, Lammers WJEP, Bonke FIM, Schalij MJ (1988) The length of the excitation wave as an index for the susceptibility to reentrant atrial arrhythmias. Circ Res 62: 395–410

    PubMed  CAS  Google Scholar 

  85. Rose G, Marmot MG (1981) Social class and coronary heart disease. Br Heart J 45: 13–19

    PubMed  CAS  Google Scholar 

  86. Rosen MR, Hordof AJ, Ilvento JP, Danilo P (1977) Effects of adrenergic amines on electrophysiological properties and automaticity of neonatal and adult Purkinje fibers. Circ Res 40: 390–400

    PubMed  CAS  Google Scholar 

  87. Ruberman W, Weinblatt E, Goldberg J, Chaudhary BS (1984) Psychosocial influences on mortality after myocardial infarction. N Engl J Med 311: 552–559

    PubMed  CAS  Google Scholar 

  88. Schaper W (1984) Experimental infarcts and the microcirculation. In: Hearse DJ, Yellon DM (eds) Therapeutic Approaches to Myocardial Infarct Size Limitation. Raven Press, New York, pp 43–60

    Google Scholar 

  89. Schömig A, Dart AM, Dietz R, Mayer E, Kübler W (1984) Release of endogenous catecholamines in the ischemic myocardium of the rat. Part A: Locally mediated release. Circ Res 55: 689–701

    PubMed  Google Scholar 

  90. Schömig A, Fischer S, Kurz T, Richardt G, Kühler W (1987) Nonexocytotic release of endogenous noradrenaline in the ischemic and anoxic rat heart: mechanism and metabolic requirements. Circ Res 60: 194–205

    PubMed  Google Scholar 

  91. Schubert B, Van Dongen AMJ, Kirsch GE, Brown AM (1990) Inhibition of cardiac Na current by isoproterenol. Am J Physiol 258: H977 - H982

    PubMed  CAS  Google Scholar 

  92. Schwartz PJ, Priori SG Sympathetic nervous system and cardiac and arrhythmias. In: Zipes DP, Jalife J (eds) Cardiac Electrophysiology, From Cell To Bedside. WB Saunders, Philadelphia, pp. 330–343

    Google Scholar 

  93. Schwartz PJ, Stone HL (1982) The role of the autonomic nervous system in sudden cardiac death. Ann NY Acad Sci 382: 162–180

    PubMed  CAS  Google Scholar 

  94. Schwartz PJ, Vanoli E (1981) Cardiac arrhythmias elicited by interaction between acute myocardial ischemia and sympathetic hyperactivity. A new experimental model for the study of antiarrhythmic drugs. J Cardiovasc Pharmacol 3: 1251–1259

    PubMed  CAS  Google Scholar 

  95. Skinner JE, Reed JC (1981) Blockade of frontocortical-brain stem pathway prevents ventricular fibrillation of ischemic heart. Am J Physiol 240: H156 - H163

    PubMed  CAS  Google Scholar 

  96. Stewart JR, Burmeister WE, Burmeister J, Lucchesi BR (1980) Electrophysiologic and antiarrhythmic effects of phentolamine in experimental coronary artery occlusion and reperfusion in the dog. J Cardiovasc Pharmacol 2: 77–91

    PubMed  CAS  Google Scholar 

  97. Tan HL, Mazó P, Verberne HJ, Sleeswijk ME, Coronel R, Opthof T, Janse MJ (1993) Ishaemic preconditioning delays ischaemia induced cellular electrical uncoupling in rabbit myocardium by activation of ATP sensitive potassium channels. Cardiovasc Res 27: 644–651

    PubMed  CAS  Google Scholar 

  98. Todd EP, Vick RL (1971) Kalemotropic effects of epinephrine: analysis with adrenergic agonists and antagonists. Am J Physiol 220: 1964–1969

    PubMed  CAS  Google Scholar 

  99. Tofler GH, Brezinski D, Schafer AI, Czeisler CA, Rutherford JD, Willich SN, Gleason RE, Williams GH, Muller JE (1987) Concurrent morning increase in platelet aggregability and the risk of myocardial infarction and sudden cardiac death. N Engl J Med 316: 1514–1518

    PubMed  CAS  Google Scholar 

  100. Trautwein W, Schmidt RF (1960) Zur Membran Wirkung des Adrenalins an der Herzmuskelfaser. Pflügers Arch 271: 715–726

    CAS  Google Scholar 

  101. Upsher ME, Weiss HR (1986) Heterogenous distribution of beta adrenoceptors in the dog left ventricle. J Mol Cell Cardiol 18: 657–660

    PubMed  CAS  Google Scholar 

  102. Verrier RL (1990) Behavioral stress, myocardial ischemia, and arrhythmias. In: Zipes DP, Jalife J (eds) Cardiac Electrophysiology, From Cell To Bedside. WB Saunders, Philadelphia, pp. 343–352

    Google Scholar 

  103. Vleugels A (1979) Hypoxia and the duration of the action potential. Thesis, University Leuven. Acco, Leuven

    Google Scholar 

  104. Vleugels A, Vereecke J, Carmeliet E (1980) Ionic currents during hypoxia in voltage clamped cat ventricular muscle. Circ Res 47: 501–508

    PubMed  CAS  Google Scholar 

  105. Wallace AG, Mignone RJ (1966) Physiologic evidence concerning the reentry hypothesis for ectopie beats. Am Heart J 72: 60–70

    PubMed  CAS  Google Scholar 

  106. Wehrmacher WH, Randall WC (1984) Regulation of the heart in health and disease. In: Randall WC (ed) Nervous Control of Cardiovascular Function. Oxford University Press, New York, pp. 3–19

    Google Scholar 

  107. Weiss JM, Shine KI (1982) [K+]o accumulation and electrophysiological alterations during early myocardial ischemia. Am J Physiol 243: H318–H327

    PubMed  CAS  Google Scholar 

  108. Wilde AAM (1988) Myocardial ischemia and hypoxia. Cellular ionic and electrical activity. Thesis, University of Amsterdam. Rodopi, Amsterdam

    Google Scholar 

  109. Wilde AAM, Peters RJG, Janse MJ (1988) Catecholamine release and potassium accumulation in the isolated globally ischemic rabbit heart. J Mol Cell Cardiol 20: 887–896

    PubMed  CAS  Google Scholar 

  110. Winckler J (1969) Über die adrenergen Herznerven bei Ratte und Meerschweinchen. Z Zellforsch Mikrosk Anat 98: 106–121

    PubMed  CAS  Google Scholar 

  111. Yanowitz F, Preston JA, Abildskov JA (1966) Functional distribution of right and left stellate innervation to the ventricles. Circ Res 18: 416–428

    PubMed  CAS  Google Scholar 

  112. Zaza A, Malfatto G, Schwartz PJ (1991) Sympathetic modulation of the relation between ventricular repolarization and cycle length. Circ Res 68: 1191–1203

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt

About this chapter

Cite this chapter

Opthof, T., Janse, M.J. (1994). Effects of the sympathetic nervous system on conduction and refractoriness in normal and ischemic myocardium. In: Zehender, M., Meinertz, T., Just, H. (eds) Myocardial Ischemia and Arrhythmia. Steinkopff. https://doi.org/10.1007/978-3-642-72505-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72505-0_8

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-72507-4

  • Online ISBN: 978-3-642-72505-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics