Skip to main content

Ischemia and early extracellular K+ accumulation in cardiac cells

  • Chapter
Myocardial Ischemia and Arrhythmia
  • 790 Accesses

Summary

Among the early changes in ion concentration during myocardial ischemia the rise in extracellular K+ concentration is the most pronounced. Four possible mechanisms are proposed and evaluated. They are not mutually exclusive and all probably play a role to a variable extent, depending on the degree of hypoxia versus ischemia: 1) Volume contraction of the extracellular space, secondary to the production of intracellular osmotically active molecules, can maximally explain a doubling of the normal K+ concentration. 2) Experimental evidence for inhibition of the active K+ inward transport is controversial. 3) No direct evidence exists for electroneutral K+ transport as a cotransport with anions or an exchange with cations. 4) An increase in electrogenic K+ outward movement has been demonstrated to occur in hypoxia and metabolic inhibition. As to the nature of the K+ current it is difficult to select one of the multiple K+ currents available. An increase in inward current is the conditio sine qua non to explain an important K+ loss at rest. The best candidates for K+ loss in stimulated preparations are the ATP-dependent, the Nai-activated, and the AA-activated K+ channels; they are time-independent and show outward rectification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allen DG, Morris PG, Orchard CH, Pirolo JS (1985) A nuclear magnetic resonance study of metabolism in the ferret heart during hypoxia and inhibition of glycolysis. J Physiol, 361: 185–204

    PubMed  CAS  Google Scholar 

  2. Bekheit S-S, Restivo M, Boutjdir M, Henkin R, Gooyandeh K, Assadi M, Khatib S, Gough WB, El-Sherif N (1990) Effects of glyburide on ischemia-induced changes in extracellular potassium and local myocardium activation: a potential new approach to the management of ischemia-induced malignant ventricular arrhythmias. Am Heart J 119: 1025–1033

    Article  PubMed  CAS  Google Scholar 

  3. Benndorf K, Bollmann G, Friedriech M, Hirche H (1992) Anoxia induces time-independent K+ current through KATP channels in isolated heart cells of the guinea-pig. J Physiol 454: 339–357

    PubMed  CAS  Google Scholar 

  4. Bhatnagar A, Srivastava SK, Szabo G (1990) Oxidative stress alters specific membrane currents in isolated cardiac myocytes. Circ Res 67: 535–549

    PubMed  CAS  Google Scholar 

  5. Burnashev NA, Undrovinas AI, Fleidervish IA, Rosenshtraukh LV (1989) Ischemic poison lysophosphatidylcholine modifies heart sodium channels gating inducing long-lasting bursts of openings. Pflüg Arch 415: 124–126

    Article  CAS  Google Scholar 

  6. Bustamente JO, Ruknudin A, Sachs F (1991) Stretch-activated channels in heart cells: relevance to cardiac hypertrophy. J Cardiovasc Pharmacol 17, suppl 2, 5110–5113

    Google Scholar 

  7. Carmeliet E (1992) A fiery subsarcolemmal space for intracellular Na+ in cardiac cells? Cardiovasc Res 26: 433–442

    Article  PubMed  CAS  Google Scholar 

  8. Carmeliet E, Storms L, Vereecke J (1990) The ATP-dependent K-channel and metabolic inhibition. In: Zipes DP, Jalife J, eds. “Cardiac Electrophysiology. From cell to bedside.” Philadelphia; WB Saunders, 103–108

    Google Scholar 

  9. Cascio ZE, Yan G-X, Kléber AG (1989) Inhomogeneity of impulse propagation in myocardial ischemia: the critical role of CO2. Circulation 80, II–194

    Google Scholar 

  10. Clarkson CW, Ten Eick RE (1983) On the mechanism of lysophosphatidylcholineinduced depolarization of cat myocardium. Circ Res 52: 543–556

    PubMed  CAS  Google Scholar 

  11. Colquhoun D, Neher E, Reuter H, Stevens CF (1981) Inward current channels activated by intracellular Ca in cultured cardiac cells. Nature, 294: 752–754

    Article  PubMed  CAS  Google Scholar 

  12. Corr PB, Gross RW, Sobel BE (1982) Arrhythmogenic amphiphilic lipids and the myocardial cell membrane? J Mol Cell Card 14: 619–626

    Article  CAS  Google Scholar 

  13. Coulombe A, Coraboeuf E (1992) Large-conductance chloride channels of new-born rat myocytes are activated by hypotonic media. Pflüg Arch 422: 143–150

    Article  CAS  Google Scholar 

  14. Coulombe A, Lefevre IA, Baro I, Coraboeuf E (1989) Barium-and calcium-permeable channels open at negative membrane potentials in rat ventricular myocytes. J Memb Biol 111: 57–67

    Article  CAS  Google Scholar 

  15. Creer MH, Dobmeyer DJ, Corr PB (1990) Amphipathic lipid metabolites and arrhythmias during myocardial ischemia. “Cardiac Electrophysiology. From cell to bedside” Zipes DP, Jalife J (eds) WB Saunders Company, pp 417–433

    Google Scholar 

  16. Cuevas J, Bassett AL, Cameron JS, Furukawa T, Myerburg RJ, Kimura S (1991) Effect of H+ on ATP-regulated K+ channels in feline ventricular myocytes. Am J Physiol, 261: H755–H761

    PubMed  CAS  Google Scholar 

  17. Ehara T, Noma A, Ono K (1988) Calcium-activated non-selective cation channel in ventricular cells isolated from adult guinea-pig hearts. J Physiol 403: 117–133

    PubMed  CAS  Google Scholar 

  18. Ellingsen O, Sejersted OM, Vengen O A, Ilebekk A (1991) Frequency dependent myocardial potassium fluxes during ß adrenergic stimulation of intact pig hearts. Cardiovasc Res 25: 364–370

    Article  PubMed  CAS  Google Scholar 

  19. Faivre J-F, Findlay I (1990) Action potential duration and activation of ATP-sensitive potassium current in isolated guinea-pig ventricular myocytes. Biochim Biophy Acta 1029: 167–172

    Article  CAS  Google Scholar 

  20. Fan Z, Makielski JC (1993) Intracellular H+ and Ca’ modulation of trypsinmodified ATP-sensitive K+ channels in rabbit ventricular myocytes. Circ Res 72: 715–722

    PubMed  CAS  Google Scholar 

  21. Findlay I (1988) Effects of ADP upon the ATP-sensitive K+ channel in rat ventricular myocytes. J Memb Biol 101: 83–93

    Article  CAS  Google Scholar 

  22. Findlay I, Faivre J-F (1991) ATP-sensitive K channels in heart muscle. Spare channels. FEBS letters 279: 95–97

    Google Scholar 

  23. Fosset M, De Weille JR, Green RD, Schmid-Antomarchi H, Lazdunski, M (1988) Antidiabetic sulfonylureas control action potential properties in heart cells via high affinity receptors that are linked to ATP-dependent K+ channels. J Biol Chem, 263: 7933–7936

    PubMed  CAS  Google Scholar 

  24. Friedrich M, Benndorf K, Schwabb M, Hirche HJ (1990) Effects of anoxia on K and Ca currents in isolated guinea pig cardiocytes. Pflüg Arch 416: 207–209

    Article  CAS  Google Scholar 

  25. Friel DD, Bean BP (1988) Two ATP-activated conductances in bullfrog atrial cells. J Gen Physiol, 91: 1–27

    Article  PubMed  CAS  Google Scholar 

  26. Furukawa T, Kimura S, Furukawa N, Bassett AL, Myerburg RJ (1991) Role of cardiac ATP-regulated potassium channels in differential responses of endocardial and epicardial cells to ischemia. Circ Res 68: 1693–1702

    PubMed  CAS  Google Scholar 

  27. Gasser RNA, Vaughan-Jones RD (1990) Mechanism of potassium efflux and action potential shortening during ischaemia in isolated mammalian cardiac muscle. J Physiol 431: 713–741

    PubMed  CAS  Google Scholar 

  28. Guarnieri T (1987) Intracellular sodium-calcium dissociation in early contractile failure in hypoxic ferret papillary muscle. J Physiol 388: 449–465

    PubMed  CAS  Google Scholar 

  29. Hagiwara N, Masuda H, Shoda M, Irisawa H (1992) Stretch-activated anion currents of rabbit cardiac myocytes. J Physiol, 456: 285–302

    PubMed  CAS  Google Scholar 

  30. Heathers GP, Yamada KA, Kanter EM, Corr PB (1987) Long-chain acylcarnitines mediate the hypoxia-induced increase in al-adrenergic receptors on adult canine myocytes. Circ Res 61: 735–746

    PubMed  CAS  Google Scholar 

  31. Hicks MN, Cobbe SM (1991) Effect of glibenclamide on extracellular potassium accumulation and the electrophysiological changes during myocardial ischaemia in the arterially perfused interventricular septum of rabbit. Cardiovasc Res 25: 407–413

    Article  PubMed  CAS  Google Scholar 

  32. Hill JA Jr, Coronado R, Strauss HC (1988) Reconstitution and characterization of a calcium-activated channel from heart. Circ Res 62: 411–415

    PubMed  CAS  Google Scholar 

  33. Hill JL, Gettes LS (1980) Effect of acute coronary occlusion on local myocardial extracellular K + activity in swine. Circulation 61: 768–778

    PubMed  CAS  Google Scholar 

  34. Huang JM-C, Xian H, Bacaner M (1992) Long-chain fatty acids activate calcium channels in ventricular myocytes. Proc Nat Acad Sci 89: 6452–6456

    Article  PubMed  CAS  Google Scholar 

  35. Hume JR, Harvey RD (1991) Chloride conductance pathways in heart. Am J Physiol 261: C399–C412

    PubMed  CAS  Google Scholar 

  36. Isenberg G, Vereecke J, Van der Heyden G, Carmeliet E (1983) The shortening of the action potential by DNP in guinea-pig ventricular myocytes is mediated by an increase in time-independent K conductance. Pflüg Arch 397: 251–259

    Article  CAS  Google Scholar 

  37. Ito H, Tung RT, Sugimoto T, Kobayashi I, Takahashi K, Katada T, Ui M, Kurachi Y (1992) On the mechanism of G protein fly subunit activation of the muscarinic K channel in guinea pig atrial cell membrane. Comparison with the ATP-sensitive K channel. J Gen Physiol 99: 961–983

    Google Scholar 

  38. Ito H, Vereecke J, Carmeliet E (1992) Intracellular protons inhibit inward rectifier K channel of guinea-pig ventricular cell membrane. Pflug Arch 422: 280–286

    Article  CAS  Google Scholar 

  39. Jabr RI, Cole WC (1993) Alterations in electrical activity and membrane currents induced by intracellular oxygen-derived free radical stress in guinea pig ventricular myocytes. Circ Res 72: 1299–1244

    Google Scholar 

  40. Janse MJ, Kléber AG (1981) Electrophysiological changes and ventricular arrhythmias in the early phase of regional myocardial ischemia. Circ Res 49: 1069–1081

    PubMed  CAS  Google Scholar 

  41. Jennings RB, Reimer KA, Steenbergen C (1986) Myocardial ischemia revised. The osmolar load, membrane damage and reperfusion. J Mol and Cell Card 18: 769–780

    Google Scholar 

  42. Kameyama M, Kakei M, Sato R, Shibasaki T, Matsuda H, Irisawa H (1984) Intracellular Na+ activates a K+ channel in mammalian cardiac cells. Nature 309: 354–456

    Article  PubMed  CAS  Google Scholar 

  43. Kammermeier H, Schmidt P, Jüngling E (1982) Free energy change of ATP hydrolysis: a causal factor of early hypoxic failure of the myocardium? J Mol Cell Card 14: 267–277

    Article  CAS  Google Scholar 

  44. Kantor PF, Coetzee WA, Carmeliet EE, Dennis SC, Opie LH (1990) Reduction of ischemic K loss and arrhythmias in rat hearts. Effect of glibenclamide, a sulfonylurea. Circ Res 66: 478–485

    Google Scholar 

  45. Keung EC, Li Q (1991) Lactate activates ATP-sensitive potassium channels in guinea pig ventricular myocytes. J Clin Invest 88: 1772–1777

    Article  PubMed  CAS  Google Scholar 

  46. Kim D (1992) A mechanosensitive K channel in heart cells. Activation by arachidonic acid. J Gen Physiol 100: 1021–1040

    Article  PubMed  CAS  Google Scholar 

  47. Kim D (1993) Novel cation-selective mechanosensitive ion channel in the atrial cell membrane. Circ Res 72: 225–231

    PubMed  CAS  Google Scholar 

  48. Kim D, Clapham DE (1989) Potassium channels in cardiac cells activated by arachidonic acid and phospholipids. Science 244: 1174–1176

    Article  PubMed  CAS  Google Scholar 

  49. Kim D, Duff RA (1990) Regulation of K channels in cardiac myocytes by free fatty acids. Circ Res 67: 1040–1046

    PubMed  CAS  Google Scholar 

  50. Kirsch GE, Codina J, Birnbaumer L, Brown AM (1990) Coupling of ATP-sensitive K channels to Al receptors by G proteins in rat ventricular myocytes. Am J Physiol 259: H820-H 826

    Google Scholar 

  51. Kiyosue T, Arita M (1986) Effects of lysophosphatidylcholine on resting potassium conductance of isolated guinea pig ventricular cells. Pflug Arch 406: 296–302

    Article  CAS  Google Scholar 

  52. Kléber AG (1983) Resting membrane potential, extracellular potassium activity, and intracellular sodium activity during acute global ischemia in isolated perfused guinea pig hearts. Circ Res 52: 442–450

    PubMed  Google Scholar 

  53. Kléber AG, Riegger CB, Janse MJ (1987) Extracellular K+ and H shifts in early ischemia: mechanisms and relation to changes in impulse propagation. J Mol Cell Card 19: Suppl V, 35–44

    Google Scholar 

  54. Knopf H, Theising R, Hirche HJ (1988) The effect of desipramine on ischaemia induced changes in extracellular K+-, Na +- and H+- concentrations and noradrenaline release in the isolated rat heart during global ischaemia. J Cardiovasc Pharmacol 12: 8–14

    Article  Google Scholar 

  55. Knopf H, Theising R, Moon CH, Hirche HJ (1990) Continuous determination of extracellular space and changes of K+, Na, Ca2+, and H+ during global ischaemia in isolated rat hearts. J Mol Cell Card 22: 1259–1272

    Article  CAS  Google Scholar 

  56. Koyano T, Kakei M, Nakashima H, Yoshinaga M, Matsuoka T, Tanaka H (1993) ATP-regelated K channels are modulated by intracellular H in guinea pig ventricular cells. J Physiol, 463: 747–766

    PubMed  CAS  Google Scholar 

  57. Lederer JW, Niggli E, Hadley RW (1990) Sodium-calcium exchange in excitable cells: Fuzzy space. Science 248: 283

    Google Scholar 

  58. Lee HC, Mohabir R, Smith N, Franz MR, Clusin WT (1988) Effect of ischemia on Ca-dependent fluorescence transients in rabbit hearts containing Indo 1. Circulation 78: 1047–1059

    Article  PubMed  CAS  Google Scholar 

  59. Le Guennec J-Y, White E, Gannier F, Argibay JA, Garnier D (1991) Stretch-induced increase of resting intracellular calcium concentration in single guinea-pig ventricular myocytes. Exp Physiol 76: 975–978

    PubMed  Google Scholar 

  60. Luk H-N, Carmeliet E (1990) Nat-activated K current in cardiac cells: rectification, open probability, block and role in digitalis toxicity. Pflüg Arch 416: 766–768

    Article  CAS  Google Scholar 

  61. Malloy CR, Buster DC, Castro MMCA, Geraldes CFGC, Jeffrey JMH, Sherry AD (1990) Influence of global ischemia on intracellular sodium in the perfused rat heart. Magn Res Med 15: 33–44

    Article  CAS  Google Scholar 

  62. Matsuda H (1988) Open-state substructure of inwardly rectifying potassium channels revealed by magnesium block in guinea-pig heart cells. J Physiol 397: 237–258

    PubMed  CAS  Google Scholar 

  63. Matsuura H (1993) Effects of internal and external Na+ ions on inwardly rectifying K channels in guinea-pig ventricular cells. J Physiol, 460: 311–326

    Google Scholar 

  64. Matsuda H, Ehara T (1992) Activation of chloride current by purinergic stimulation in guinea pig heart cells. Circ Res 70: 851–855

    Google Scholar 

  65. Mazzanti M, DiFrancesco D (1989) Intracellular Ca modulates K-inward rectification in cardiac myocytes. Pflüg Arch 413: 322–324

    Article  CAS  Google Scholar 

  66. Mitan A, Shattock MJ (1992) Role of Na-activated K channel, Na—K—Cl cotransport, and Na—K pump in [K]e changes during ischemia in rat heart. Am J Physiol 263: H333–H340

    Google Scholar 

  67. Morley GE, Anumonwo JMB, Delmar M (1992) Effects of 2, 4-dinitrophenol or low (ATP); on cell excitability and action potential propagation in guinea pig ventricular myocytes. Circ Res 71: 821–830

    CAS  Google Scholar 

  68. Nakao M, Gadsby DC (1989) (Na) and ( K) dependence of the Na/K pump current-voltage relationship in guinea-pig ventricular myocytes. J Gen Physiol 94: 539–565

    Google Scholar 

  69. Nichols CG, Ripoll C, Lederer WJ (1991) ATP-sensitive potassium channel modulation of the guinea pig ventricular action potential and contraction. Circ Res 68: 280–287

    PubMed  CAS  Google Scholar 

  70. Noma A (1983) ATP-regulated K+ channels in cardiac muscle. Nature 305: 147–148

    Article  PubMed  CAS  Google Scholar 

  71. Pike MM, Kitakaze M, Marban E (1990) 23Na—NMR measurements of intracellular sodium in intact perfused ferret hearts during ischemia and reperfusion. Am J Physiol 259: H1767–H1773

    Google Scholar 

  72. Rau EE, Shine KI, Langer GA (1977) Potassium exchange and mechanical performance in anoxic mammalian myocardium. Am J Physiol 232: H85–H94

    PubMed  CAS  Google Scholar 

  73. Rosenberg RL, Hess P, Reeves JP, Smilowitz H, Tsien RW (1986) Calcium channels in planar lipid bilayers: insights into mechanisms of ion permeation and gating, Science, 231: 1564–1566

    Article  PubMed  CAS  Google Scholar 

  74. Saint DA, Ju Y-K, Gage PW (1992) A persistent sodium current in rat ventricular myocytes. J Physiol 453: 219–231

    PubMed  CAS  Google Scholar 

  75. Sanguinetti MC, Jurkiewicz NK (1990) Two components of cardiac delayed rectifier K current: Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol 96: 195–215

    Google Scholar 

  76. Schömig A, Fischer S, Kurz T, Richardt G, Schömig E (1987) Non-exocytotic release of noradrenaline in the ischemic and anoxic rat heart: mechanism and metabolic requirements. Circ Res 60: 194–205

    PubMed  Google Scholar 

  77. Shattock M, Matsuura H (1993) Measurement of Na+- K+ pump current in isolated rabbit ventricular myocytes using the whole-cell voltage-clamp technique Inhibition of the pump by oxidant stress. Circ Res 72: 91–101

    PubMed  CAS  Google Scholar 

  78. Shieh R-C, Stuart JS, Goldhaber JI, Weiss JN (1993) Transsarcolemmal lactate transport in guinea-pig ventricular myocytes. Biophys J 64: A403

    Google Scholar 

  79. Sigurdson W, Ruknudin A, Sachs F (1992) Calcium imaging of mechanically induced fluxes in tissue-cultured chick heart: role of stretch-activated ion channels. Am J Physiol 262: H1110–H1115

    PubMed  CAS  Google Scholar 

  80. Sipido K, Callewaert G, Carmeliet E (1993) (Ca2+), transients and (Ca2+);dependent chloride current in single Purkinje cells from rabbit heart. J Physiol 468: 641–667

    Google Scholar 

  81. Sorota S (1992) Swelling-induced chloride-sensitive current in canine atrial cells revealed by whole-cell patch-clamp method. Circ Res 70: 679–687

    PubMed  CAS  Google Scholar 

  82. Steenbergen C, Murphy E, Levy L, London RE (1987) Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat hearts. Cire Res 60: 700–707

    CAS  Google Scholar 

  83. Tanaka M, Gilbert J, Pappano AJ (1992) Inhibition of sodium pump by 1-palmitoylcarnitine in single guinea-pig ventricular myocytes. J Mol Cell Card 24: 711–720

    Article  CAS  Google Scholar 

  84. Taniguchi J, Noma A, Irisawa H (1983) Modification of the cardiac action potential by intracellular injection of adenosine triphosphate and related substances in guinea pig single ventricular cells. Circ Res 53: 131–139

    PubMed  CAS  Google Scholar 

  85. Tranum-Jensen J, Janse MJ, Fiolet JWT, Krieger WJG (1981) Tissue osmolality, cell swelling, and reperfusion in acute regional myocardial ischemia in the isolated porcine heart. Cire Res 49: 364–381

    CAS  Google Scholar 

  86. Trube G, Hescheler J (1984) Inward-rectifying channels in isolated patches of the heart cell membrane: ATP-dependence and comparison with cell-attached patches. Pflüg Arch 401: 178–184

    Google Scholar 

  87. Tseng G-N (1992) Cell swelling increases membrane conductance of canine cardiac cells: evidence for a volume-sensitive Cl channel. Am J Physiol 262: C1056–C1068

    PubMed  CAS  Google Scholar 

  88. Undrovinas AI, Fleidervish IA, Makielski JC (1992) Inward sodium current at resting potentials in single cardiac myocytes induced by the ischemic metabolite lysophosphatidylcholine. Circ Res 71: 1231–1241

    PubMed  CAS  Google Scholar 

  89. Van der Heyden G, Vereecke J, Carmeliet E (1985) The effect of cyanide on the K-current in guinea-pig ventricular myocytes. Basic Res Cardiol 80, Suppl 1: 93–96

    Google Scholar 

  90. Vanheel B, de Hemptinne A (1992) Influence of KAT? channel modulation on net potassium efflux from ischaemic mammalian cardiac tissue. Cardiovasc Res 26: 1030–1039

    CAS  Google Scholar 

  91. Vanheel B, de Hemptinne A, Leusen I (1990) Acidification and intracellular sodium ion activity during simulated myocardial ischemia. Am J Physiol 259: C169–C179

    CAS  Google Scholar 

  92. Van Wagoner DR (1993) Mechanosensitive gating of atrial ATP-sensitive potassium channels. Circ Res 72: 973–983

    PubMed  Google Scholar 

  93. Veldkamp MW (1993) Potassium channels in the heart. Thesis. Febodruk Enschede, The Netherlands, p 97

    Google Scholar 

  94. Venkatesh N, Lamp ST, Weiss JN (1991) Sulfonylureas, ATP-sensitive K+ channels, and cellular K+ loss during hypoxia, ischemia, and metabolic inhibition in mammalian ventricle. Cire Res 69: 623–637

    CAS  Google Scholar 

  95. Vleugels A, Carmeliet E (1976) Hypoxia increases potassium efflux from mammalian myocardium. Experientia 32: 483–484

    Article  PubMed  CAS  Google Scholar 

  96. Weiss J, Hiltbrand B (1985) Functional compartmentation of glycolytic versus oxidation metabolism in isolated rabbit heart. J Clin Invest 75: 436–447

    Article  PubMed  CAS  Google Scholar 

  97. Weiss JN, Lamp ST (1989) Cardiac ATP-sensitive K+ channels. Evidence for preferential regulation by glycolysis. J Gen Physiol 94: 911–935

    Google Scholar 

  98. Weiss JN, Lamp ST, Shine KI (1989) Cellular K+ loss and anion efflux during myocardial ischemia and metabolic inhibition. Am J Physiol 256: H1165–H1175

    PubMed  CAS  Google Scholar 

  99. Weiss JN, Shine KI (1982) Extracellular K + accumulation during myocardial ischemia in isolated rabbit heart. Am J Physiol 242: H619–H628

    PubMed  CAS  Google Scholar 

  100. Weiss J, Shine K (1986) Effects of heart rate on (K+) accumulation during myocardial ischemia. Am J Physiol 250: H982–H1001

    PubMed  CAS  Google Scholar 

  101. Wilde AAM, Escande D, Schumacher CA, Thuringer D, Mestre M, Fiolet JWT, Janse MJ (1990) Potassium accumulation in the globally ischemic mammalian heart. A role for the ATP-sensitive potassium channel Circ Res 67: 835–843

    CAS  Google Scholar 

  102. Woodley SL, Ikenouchi H, Barry WH (1991) Lysophosphatidylcholine increases cytosolic calcium in ventricular myocytes by direct action on the sarcolemma. Journal of Mol Cell Card 23: 671–680

    Article  CAS  Google Scholar 

  103. Yan G-X, Yamada KA, Kléber AG, McHowat J, Corr PB (1993) Dissociation between cellular K + loss, reduction in repolarization time, and tissue ATP levels during myocardial hypoxia and ischemia. Circ Res 72: 560–570

    PubMed  CAS  Google Scholar 

  104. Zygmunt AC, Gibbons WR (1991) Calcium-activated chloride current in rabbit ventricular myocytes. Circ Res 68: 424–437

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt

About this chapter

Cite this chapter

Carmeliet, E., Vereecke, J. (1994). Ischemia and early extracellular K+ accumulation in cardiac cells. In: Zehender, M., Meinertz, T., Just, H. (eds) Myocardial Ischemia and Arrhythmia. Steinkopff. https://doi.org/10.1007/978-3-642-72505-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72505-0_4

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-72507-4

  • Online ISBN: 978-3-642-72505-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics