Skip to main content

Selected metabolic alterations in the ischemic heart and their contributions to arrhythmogenesis

  • Chapter
Book cover Myocardial Ischemia and Arrhythmia

Summary

Myocardial ischemia in vivo is associated with dramatic electrophysiologic alterations which occur within minutes of cessation of coronary flow and are rapidly reversible with reperfusion. This suggests that subtle and reversible biochemical and/or ionic alterations within or near the sarcolemma may contribute to the electrophysiologic derangements. Our studies have concentrated on two amphipathic metabolites, long-chain acylcarnitines and lysophosphatidylcholine (LPC) which have been shown to increase rapidly in ischemic tissue in vivo and to elicit electrophysiologic derangements in normoxic tissue in vitro. Incorporation of these amphiphiles into the sarcolemma at concentrations of 1–2 mol %, elicits profound electrophysiologic derangements analogous to those observed in ischemic myocardium in vivo. LPC is produced in endothelial cells and myocytes in response to thrombin. Thus, activation of the coagulation system during ischemia may result in extracellular production and accumulation of LPC. The pathophysiological effects of the accumulation of both amphiphiles are thought to be mediated by alterations in the biophysical properties of the sarcolemmal membrane, although there is a possibility of a direct effect on ion channels. Inhibition of carnitine acyltransferase I in the ischemic cat heart was found to prevent the increase in both long-chain acylcarnitines and LPC and to significantly reduce the incidence of malignant arrhythmias including ventricular tachycardia and fibrillation. This review focuses on the influence of these amphiphiles on cardiac ionic currents observed during early ischemia and presents data supporting the concept that accumulation of these amphiphiles within the sarcolemma contributes to changes in ionic conductances leading to electrophysiological derangements. The contribution and the accumulation of these amphiphiles to alterations in intracellular Ca2+ as related to changes in Na/K-ATPase activity and intracellular Na+ are examined. Other alterations occur during early myocardial ischemia in addition to the events reviewed here; however, the results of multiple studies over the past two decades indicate that accumulation of these amphiphiles contributes importantly to arrhythmogenesis and that development of specific inhibitors of carnitine acyltransferase I or phospholipase A2 may be a promising therapeutic strategy to attenuate the incidence of lethal arrhythmias associated with ischemic heart disease in man.

This article has been updated from a recently published review (McHowat et al., J. Cardiovasc. Electrophys. 4: 288–310, 1993) with any duplication through permission of Futura Publishing Company.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe M, Yamazaki N, Suzuki Y, Kobayashi A, Ohta H (1984) Effect of palmitoyl carnitine on Na+, K+-ATPase and adenylate cyclase activity of canine myocardial sarcolemma. J Mol Cell Cardiol 16: 239–245

    Article  Google Scholar 

  2. Adams RJ, Cohen DW, Gupte S, Johnson JD, Wallick ET, Wang T, Schwartz A (1979) In vitro effects of palmitylcarnitine on cardiac plasma membrane Na, K-ATPase, and sarcoplasmic reticulum Ca+ -ATPase and Ca2+ transport. J Biol Chem. 254: 12404–12410

    PubMed  CAS  Google Scholar 

  3. Adams RJ, Pitts BJR, Wood JM, Gende DA, Wallick ET, Schwartz A (1979) Effect of palmitoyl carnitine on ouabain binding to Na,K-ATPase. J Mol Cell Cardiol 11: 941–959

    Article  PubMed  CAS  Google Scholar 

  4. Akita H, Creer MH, Yamada KA, Sobel BE, Corr PB (1986) Electrophysiologic effects of intracellular lysophosphoglycerides and their accumulation in cardiac lymph with myocardial ischemia in dogs. J Clin Invest 78: 271–280

    Article  PubMed  CAS  Google Scholar 

  5. Allen DG, Lee JA, Smith GL (1989) The consequences of simulated ischaemia on intracellular Ca’ and tension in isolated ferret ventricular muscle. J Physiol 410: 297–323

    PubMed  CAS  Google Scholar 

  6. Arnsdorf MF, Sawicki GJ (1981) The effects of lysophosphatidylcholine, a toxic metabolite of ischemia, on the components of cardiac excitability in sheep Purkinje fibers. Circ Res 49: 16–30

    PubMed  CAS  Google Scholar 

  7. Balschi JA, Frazer JC, Fetters JK, Clarke K, Springer CS, Smith TW, Ingwall JS (1985) Shift reagent and Na-23 nuclear magnetic resonance discriminates between extra and intracellular sodium pools in ischemic heart. Circulation 72 (suppl 3): 355

    Google Scholar 

  8. Bersohn MM, Philipson KD, Fukushima JY (1982) Sodium-calcium exchange and sarcolemmal enzymes in ischemic rabbit hearts. Am J Physiol 242: C288–C295

    PubMed  CAS  Google Scholar 

  9. Bersohn MM, Philipson KD, Weiss RS (1991) Lysophosphatidylcholine and sodium-calcium exchange in cardiac sarcolemma: comparison with ischemia. Am J Physiol 260: C433–C438

    PubMed  CAS  Google Scholar 

  10. Broekman MJ, Ward JW, Marcus AJ (1980) Phospholipid metabolism in stimulated human platelets: Changes in phosphatidylinositol, phosphatidic acid, and lysophospholipids. J Clin Invest 66: 275–283

    Google Scholar 

  11. Brosnan JT, Fritz IB (1971) The permeability of mitochondria to carnitine and acetylcarnitine. Biochem J 125: 94P–95 P

    PubMed  CAS  Google Scholar 

  12. Burnashev NA, Undrovinas AI, Fleidervish IA, Makielski JC, Rosenshtraukh LV (1991) Modulation of cardiac sodium channel gating by lysophosphatidylcholine. J Mol Cell Cardiol 23 (suppl I): 23–30

    Article  PubMed  CAS  Google Scholar 

  13. Clarkson CW, Ten Eick RE (1983) On the mechanism of lysophosphatidylcholineinduced depolarization of cat ventricular myocardium. Circ Res 52: 543–556

    PubMed  CAS  Google Scholar 

  14. Corr PB, Creer MH, Yamada KA, Saffitz JE, Sobel BE (1989) Prophylaxis of early ventricular fibrillation by inhibition of acylcarnitine accumulation. J Clin Invest 83: 927–936

    Article  PubMed  CAS  Google Scholar 

  15. Corr PB, Saffitz JE, Sobel BE (1987) What is the contribution of altered lipid metabolism to arrhythmogenesis in the ischemic heart? In Hearse D, Manning A, Janse M, eds: Life-Threatening Arrhythmias During Ischemia and Infarction. Raven Press, New York, pp 91–114

    Google Scholar 

  16. Creer MH, Dobmeyer DJ, Corr PB (1990) Amphipathic lipid metabolites and arrhythmias during myocardial ischemia. In Zipes DP, Jalife J. eds: Cardiac Electrophysiology: From Cell to Bedside. W.B. Saunders, Philadelphia, pp 417–433

    Google Scholar 

  17. Daly MJ, Elz JS, Nayler WG (1984) Sarcolemmal enzymes and Na+-Caz+ exchange in hypoxic, ischemic, and reperfused rat hearts. Am J Physiol 247: H237–H243

    PubMed  CAS  Google Scholar 

  18. DaTorre SD, Creer MH, Pogwizd SM, Corr PB (1991) Amphipathic lipid metabolites and their relation to arrhythmogenesis in the ischemic heart. J Mol Cell Cardiol 23 (suppl I): 11–22

    Article  PubMed  CAS  Google Scholar 

  19. Dhalla NS, Panagia V, Singal PK, Makino N, Dixon IM, Eyolfson DA (1988) Alterations in heart membrane calcium transport during the development of ischemia-reperfusion injury. J Mol Cell Cardiol 20: 3–13

    Article  PubMed  CAS  Google Scholar 

  20. Dörr T, Denger R, Dörr A, Trautwein W (1990) Ionic currents contributing to the action potential in single ventricular myocytes of the guinea pig studied with action potential clamp. Pflügers Arch 416: 230–237

    Article  Google Scholar 

  21. Downar E, Janse MJ, Durrer D (1977) The effect of acute coronary artery occlusion on subepicardial transmembrane potentials in the intact porcine heart. Circulation 56: 217–224

    PubMed  CAS  Google Scholar 

  22. Downar E, Janse MJ, Durrer D (1977) The effect of “ischemic” blood on transmembrane potentials of normal porcine ventricular myocardium. Circulation 55: 455–462

    PubMed  CAS  Google Scholar 

  23. Elharrar V, Foster PR, Jirak TL, Gaum WE, Zipes DP (1977) Alterations in canine myocardial excitability during ischemia. Circ Res 40: 98–105

    PubMed  CAS  Google Scholar 

  24. Ellis D, Noireaud J (1987) Intracellular pH in sheep Purkinje fibers and ferret papillary muscles during hypoxia and recovery. J Physiol (Lond) 383: 125–141

    CAS  Google Scholar 

  25. Fabiato A (1985) Rapid ionic modification during the aequorin-detected calcium transient in a skinned canine cardiac Purkinje cell. J Gen Physiol 85: 189–246

    Article  PubMed  CAS  Google Scholar 

  26. Fabiato A (1985) Stimulated calcium current can both cause calcium loading in and trigger calcium release from the sarcoplasmic reticulum of a skinned canine Purkinje cell. J Gen Physiol 85: 291–320

    Article  PubMed  CAS  Google Scholar 

  27. Fabiato A (1985) Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol 85: 247–290

    Article  PubMed  CAS  Google Scholar 

  28. Fink KL, Gross RW (1984) Modulation of canine myocardial sarcolemmal membrane fluidity by amphiphilic compounds. Circ Res 55: 585–594

    PubMed  CAS  Google Scholar 

  29. Fiolet JWT, Baartscheer A, Schumacher CA, Coronel R, Ter Welle HF (1984) The change of the free energy of ATP hydrolysis during global ischemia and anoxia in the rat heart. Its possible role in the regulation of the transsarcolemmal sodium and potassium gradients. J Mol Cell Cardiol 16: 1023–1036

    Google Scholar 

  30. Fischbach PS, Corr PB, Yamada KA (1992) Long-chain acylcarnitine increases intracellular Ca’ and induces afterdepolarizations in adult ventricular myocytes. Circulation 86 (suppl I): 748

    Google Scholar 

  31. Ford DA, Hazen SL, Saffitz JE, Gross RW (1991) The rapid and reversible activation of a calcium-dependent plasmalogen-selective phospholipase A2 during myocardial ischemia. J Clin Invest 88: 331–335

    Article  PubMed  CAS  Google Scholar 

  32. Franson RC, Waite M, Weglicki W (1972) Phospholipase A activity of lysosomes of rat myocardial tissue. Biochemistry 11: 472–476

    Article  PubMed  CAS  Google Scholar 

  33. Franson RC, Weir DL, Thakkar J (1983) Solubilization and characterization of a neutral-active, calcium-dependent, phospholipase A2 from rabbit heart and isolated chick embryo myocytes. J Mol Cell Cardiol 15: 189–196

    Article  PubMed  CAS  Google Scholar 

  34. Gadsby DC: The Na/K pump of cardiac myocytes (1990) In Zipes DP, Jalife J, eds: Cardiac Electrophysiology: From Cell to Bedside. W.B. Saunders Co., Philadelphia

    Google Scholar 

  35. Gross RW, Ahumada GG, Sobel BE (1984) Cytosolic lysophospholipase in cardiac myocytes and its inhibition by L-palmitoyl carnitine. Am J Physiol 246: C266–C270

    PubMed  CAS  Google Scholar 

  36. Gross RW, Corr PB, Lee BE, Saffitz JE, Crafford WA Jr, Sobel BE (1982) Incorporation of radiolabeled lysophosphatidylcholine into canine Purkinje fibers and ventricular muscle: Electrophysiological, biochemical and autoradiographic correlation. Circ Res 51: 27–36

    Google Scholar 

  37. Gross RW, Drisdel RC, Sobel BE (1983) Rabbit myocardial lysophospholipase-transacylase: Purification, characterization and inhibition by endogenous cardiac amphiphiles, J Biol Chem 258: 15165–15172

    Google Scholar 

  38. Gross RW, Sobel BE (1982) Lysophosphatidylcholine metabolism in the rabbit heart. Characterization of metabolic pathways and partial purification of myocardial lysophospholipase-transacylase. J Biol Chem 257: 6702–6708

    Google Scholar 

  39. Gross RW, Sobel BE (1983) Rabbit myocardial cytosolic lysophospholipase: Purification, characterization, and competitive inhibition by L-palmitoyl carnitine. J Biol Chem 258: 5221–5226

    Google Scholar 

  40. Gross RW (1992) Myocardial phospholipases A2 and their membrane substrates. Trends Cardiovasc Med 2: 115–121

    Article  PubMed  CAS  Google Scholar 

  41. Gross RW (1983) Purification of rabbit myocardial cytosolic acyl CoA hydrolase, identity with lysophospholipase, and modulation of enzymic activity by endogenous cardiac amphiphiles. Biochemistry 22: 5641–5646

    Article  PubMed  CAS  Google Scholar 

  42. Guarneri T (1987) Intracellular sodium-calcium dissociation in early contractile failure in hypoxic ferret papillary muscles. J Physiol (Lond) 388: 449–465

    Google Scholar 

  43. Haddock BA, Yates DW, Garland PB (1970) The localization of some coenzyme A-dependent enzymes in rat liver mitochondria. Biochem J 119: 565–573

    PubMed  CAS  Google Scholar 

  44. Haigney MCP, Miyata H, Lakatta EG, Stern MD, Silverman HS (1992) Dependence of hypoxic cellular calcium loading on Na+-Ca2+ exchange. Circ Res 71: 547–557

    PubMed  CAS  Google Scholar 

  45. Hajdu S, Weiss H, Titus E (1957) The isolation of a cardiac active principle from mammalian tissue. J Pharmacol Exp Ther 120: 99–113

    PubMed  CAS  Google Scholar 

  46. Hazen SL, Ford DA, Gross RW (1991) Activation of a membrane-associated phospholipase A2 during rabbit myocardial ischemia which is highly selective for plasma-logen substrate. J Biol Chem 266: 5629–5633

    PubMed  CAS  Google Scholar 

  47. Heathers GP, Yamada KA, Kanter EM, Corr PB (1987) Long-chain acylcarnitines mediate the hypoxia-induced increase in al-adrenergic receptors on adult canine myocytes. Circ Res 61: 735–746

    PubMed  CAS  Google Scholar 

  48. Hochachka PW, Neely JR, Driedzic WR (1977) Integration of lipid utilization with Krebs cycle activity in muscle. Fed Proc 36: 2009–2014

    PubMed  CAS  Google Scholar 

  49. Idell-Wenger JA, Grotyohann LW, Neely JR (1978) Coenzyme A and carnitine distribution in normal and ischemic hearts. J Biol Chem 253: 4310–4318

    PubMed  CAS  Google Scholar 

  50. Inoue D, Pappano AJ (1983) L-palmitylcarnitine and calcium ions act similarly on excitatory ionic currents in avian ventricular muscle. Circ Res 52: 625–634

    PubMed  CAS  Google Scholar 

  51. Karli JN, Karikas GA, Hatzipavlov PK, Levis GM, Moulopoulos SN (1979) The inhibition of Na and K + stimulated ATPase activity of rabbit and dog heart sarcolemma by lysophosphatidylcholine. Life Sci 24: 1869–1876

    Article  PubMed  CAS  Google Scholar 

  52. Kawaguchi H, Shoki M, Iizuka K, Sano H, Sakata Y, Yasuda H (1991) Phospholipid metabolism and prostacyclin synthesis in hypoxic myocytes. Biochim Biophys Acta 1094: 161–167

    Article  PubMed  CAS  Google Scholar 

  53. Kiyosue T, Arita M (1986) Effects of lysophosphatidylcholine on resting potassium conductance of isolated guinea pig ventricular cells. Pfliigers Arch 406: 296–302

    Article  CAS  Google Scholar 

  54. Kléber AG (1983) Resting membrane potential, extracellular potassium activity and intracellular sodium activity during acute global ischemia in the isolated guinea pig heart. Circ Res 52: 442–450

    PubMed  Google Scholar 

  55. Knabb MT, Saffitz JE, Corr PB, Sobel BE (1986) The dependence of electrophysiological derangements on accumulation of endogenous long-chain acylcarnitine in hypoxic neonatal rat myocytes. Circ Res 58: 230–240

    PubMed  CAS  Google Scholar 

  56. Lamers JMJ, de Jonge-Sinis JT, Verdouw PD, Hülsmann WC (1987) On the possible role of long chain fatty acylcarnitine accumulation in producing functional and calcium permeability changes in membranes during myocardial ischaemia. Cardiovasc Res 21: 313–322

    CAS  Google Scholar 

  57. Lamers JMJ, Stinis HT, Montfoort AD, Hülsmann WC (1984) The effect of lipid intermediates on Ca2+ and Na+ permeability and (Na+ + K+)-ATPase of cardiac sarcolemma. Biochim Biophys Acta 774: 127–137

    Article  PubMed  CAS  Google Scholar 

  58. Lee HC, Mohabir R, Smith N, Franz MR, Clusin WT (1988) Effect of ischemia on calcium-dependent fluorescence transients in rabbit hearts containing Indo-1. Correlation with monophasic action potentials and contraction. Circulation 78: 1047–1059

    Google Scholar 

  59. Lee HC, Smith N, Mohabir R, Clusin WT (1987) Cytosolic calcium transients from the beating mammalian heart. Proc Natl Acad Sci 84: 7793–7797

    Article  PubMed  CAS  Google Scholar 

  60. Lee JA, Allen DG (1992) Changes in intracellular free calcium concentration during long exposures to simulated ischemia in isolated mammalian ventricular muscle. Cire Res 71: 58–69

    CAS  Google Scholar 

  61. Liedtke AJ, Nellis S, Neely JR (1978) Effects of excess free fatty acids on mechanical and metabolic function in normal and ischemic myocardium in swine. Circ Res 43: 652–661

    PubMed  CAS  Google Scholar 

  62. Liu E, Goldhaber JI, Weiss JN (1991) Effects of lysophosphatidylcholine on electrophysiological properties and excitation-contraction coupling in isolated guinea pig ventricular myocytes. J Clin Invest 88: 1819–1832

    Article  PubMed  CAS  Google Scholar 

  63. Marban E, Kitakaze M, Koretsune Y, Yue D, Chacko VP, Pike MM (1990) Quantification of [Ca2+]; in perfused hearts: critical evaluation of the 5F-BAPTA and nuclear magnetic resonance method as applied to the study of ischemia and reperfusion. Circ Res 66: 1255–1267

    PubMed  CAS  Google Scholar 

  64. Marban E, Kitakaze M, Kusuoka H, Porterfield JK, Yue DT, Chacko VP (1987) Intracellular free calcium concentration measured with 19F NMR spectroscopy in intact ferret hearts. Proc Natl Acad Sci 84: 6005–6009

    Article  PubMed  CAS  Google Scholar 

  65. McHowat J, Corr PB (1982) Thrombin induced increases in lysophosphatidylcholine in adult ventricular myocytes. Circulation 86 (suppl I): 821 (abstract)

    Google Scholar 

  66. McHowat J, Corr PB (1993) Thrombin-induced release of lysophosphatidylcholine from endothelial cells. J Biol Chem 268: 15605–15610

    PubMed  CAS  Google Scholar 

  67. McHowat J, Yamada KA, Saffitz JE, Corr PB (1993) Subcellular distribution of endogenous long chain acylcarnitines during hypoxia in adult canine myocytes. Cardiovasc Res 27: 1237–1243

    Article  PubMed  CAS  Google Scholar 

  68. Mészàros J, Pappano AJ (1990) Electrophysiological effects of L-palmitoylcarnitine in single ventricular myocytes. Am J Physiol 258: H931–H938

    PubMed  Google Scholar 

  69. Mészàros J, Villanova L, Pappano A (1988) Calcium ions and 1-palmitoylcarnitine induce erythrocyte electrophoretic mobility: Test of a surface charge hypothesis. J Mol Cell Cardiol 20: 481–492

    Google Scholar 

  70. Mullins LJ (1981) Ion Transport in Heart. New York, Raven press

    Google Scholar 

  71. Nakaya H, Kimura S, Kanno M (1985) Extracellular potassium activity and intracellular sodium activity under hypoxia, acidosis, and no glucose in dog hearts. Am J Physiol 249: H1078–H1085

    PubMed  CAS  Google Scholar 

  72. Oram JF, Wenger, JI, Neely JR (1975) Regulation of long chain fatty acid activation in heart muscle. J Biol Chem 250: 73–78

    PubMed  CAS  Google Scholar 

  73. Owens K, Kennett FF, Weglicki WB (1982) Effects of fatty acid intermediates on Na+-K+-ATPase activity of cardiac sarcolemma. Am J Physiol 242: H456–H461

    PubMed  CAS  Google Scholar 

  74. Pande SV (1975) A mitochondrial carnitine acylcarnitine translocase system: Carnitine acylcarnitine transport/exchange diffusion/acyl(+)carnitine inhibition/fatty acyl transport. Proc Natl Acad Sci 72: 883–887

    Article  PubMed  CAS  Google Scholar 

  75. Pauly DF, Yoon SB, McMillin JB (1987) Carnitine-acylcarnitine translocase in ischemia: evidence for sulfhydryl modification. Am J Physiol 253: H1557–H1565

    PubMed  CAS  Google Scholar 

  76. Philipson KD, Nishimoto AY (1982) Stimulation of Na -Ca’ exchange in cardiac sarcolemmal vesicles by proteinase pretreatment. Am J Physiol 243: C191–C195

    PubMed  CAS  Google Scholar 

  77. Pogwizd SM, Corr PB (1987) Reentrant and nonreentrant mechanisms contribute to arrhythmogenesis during early myocardial ischemia: Results using three-dimensional mapping. Circ Res 61: 352–371

    Google Scholar 

  78. Pogwizd SM, Onufer JR, Kramer JB, Sobel BE, Corr PB (1986) Induction of delayed afterdepolarizations and triggered activity in canine Purkinje fibers by lysophosphoglycerides. Circ Res 59: 416–426

    PubMed  CAS  Google Scholar 

  79. Priori SG, Yamada KA, Corr PB (1991) Influence of hypoxia on adrenergic modulation of triggered activity in isolated adult canine myocytes. Circulation 83: 248–259

    PubMed  CAS  Google Scholar 

  80. Ramsey RR, Tubbs PK (1975) The mechanism of fatty acid uptake by heart mitochondria: An acylcarnitine-carnitine exchange. FEBS Lett 54: 21–25

    Google Scholar 

  81. Reeves JP (1985) The sarcolemmal sodium-calcium exchange system. In Shamoo A, ed: Regulation of Calcium Transport Across Muscle Membranes. New York, Academic Press

    Google Scholar 

  82. Reuter H (1982) Na—Ca countertransport in cardiac muscle. In Martonosi AN, ed: Membranes and Transport. Vol 1, New York, Plenum Press

    Google Scholar 

  83. Saffitz JE, Corr PB, Lee BI, Gross RW, Williamson EK, Sobel BE (1984) Pathophysiological concentrations of lysoposphoglycerides quantified by electron microscopic autoradiography. Lab Invest 50: 278–286

    PubMed  CAS  Google Scholar 

  84. Sato T, Kiyosue T, Arita M (1992) Inhibitory effects of palmitoylcarnitine and lysophosphatidylcholine on the sodium current of cardiac ventricular cells. Pflügers Arch 420: 94–100

    Article  PubMed  CAS  Google Scholar 

  85. Schwertz DW, Halverson J (1992) Changes in phosphoinositide-specific phospholipase C and phospholipase A2 activity in ischemic and reperfused rat heart. Basic Res Cardiol 87: 113–127

    Article  PubMed  CAS  Google Scholar 

  86. Sedlis SP, Sequeira JM, Altszuler HM (1990) Coronary sinus lysophosphatidylcholine accumulation during rapid atrial pacing. Am J Cardiol 66: 695–698

    Article  Google Scholar 

  87. Shug AL, Thomsen JH, Folts JD, Bittar N, Klein MI, Koke JR, Huth PJ (1978) Changes in tissue levels of carpitine and other metabolites during myocardial ischemia and anoxia. Arch Biochem Biophys 187: 25–33

    Article  PubMed  CAS  Google Scholar 

  88. Snyder DW, Crafford Jr WA, Glashow JL, Rankin D, Sobel BE, Corr PB (1981) Lysophosphoglycerides in ischemic myocardium effluents and potentiation of their arrhythmogenic effects. Am J Physiol 243: H700–H707

    Google Scholar 

  89. Spedding M (1985) Activators and inactivators of Ca++ channels: New perspectives. J Pharmacol 16: 319–343

    PubMed  CAS  Google Scholar 

  90. Spedding M, Mir AK (1987) Direct activation of Ca’ channels by palmitoyl carpitine, a putative endogenous ligand. Br J Pharmacol 92: 457–468

    PubMed  CAS  Google Scholar 

  91. Steenbergen C, Murphy E, Levy L, London RE (1987) Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circ Res 60: 700–707

    PubMed  CAS  Google Scholar 

  92. Undrovinas AI, Fleidervish IA, Makielski JC (1992) Inward sodium current at resting potentials in single cardiac myocytes induced by the ischemic metabolite lysophosphatidylcholine. Circ Res 71: 1231–1241

    PubMed  CAS  Google Scholar 

  93. van der Vusse GJ, Glatz JFC, Stam HCG, Reneman RS (1992) Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev 72: 881–940

    PubMed  Google Scholar 

  94. van der Vusse GJ, Roemen Th HM, Prizen FW, Couman WA, Reneman RS (1982) Uptake and tissue content of fatty acids in dog myocardium under normoxic and ischemic conditions. Circ Res 50: 538–546

    PubMed  Google Scholar 

  95. Ver Donck L, Verellen G, Geerts H, Borgers M (1992) Lysophosphatidylcholine-induced Ca’ -overload in isolated cardiomyocytes and effect of cytoprotective drugs. J Mol Cell Cardiol 24: 977–988

    Article  Google Scholar 

  96. Vrbjar N, Slezak J, Ziegelhoffer A, Tribulova N (1991) Features of the (Na,K)-ATPase of cardiac sarcolemma with particular reference to myocardial ischaemia. Eur Heart J 12 (Suppl F): 149–152

    PubMed  CAS  Google Scholar 

  97. Whitmer JT, Idell-Wenger JA, Rovetto MJ, Neely JR (1978) Control of fatty acid metabolism in ischemic and hypoxic hearts. J Biol Chem 253: 4305–4309

    PubMed  CAS  Google Scholar 

  98. Wilde AAM, Kléber AG (1986) The combined effects of hypoxia, high K+, and acidosis on the intracellular sodium activity and resting potential in guinea pig papillary muscle. Circ Res 58: 249–256

    PubMed  CAS  Google Scholar 

  99. Winston DC, Spinale FG, Crawford FA, Schulte BA (1990) Immunocytochemical and enzyme histochemical localization of Na+, K+-ATPase in normal and ischemic porcine myocardium. J Mol Cell Cardiol 22: 1071–1082

    Article  PubMed  CAS  Google Scholar 

  100. Wolf RA, Gross RW (1985) Identification of neutral active phospholipase C which hydrolyzes choline glycerophospholipids and plasmalogen selective phospholipase A2 in canine myocardium. J Biol Chem 260: 7295–7303

    PubMed  CAS  Google Scholar 

  101. Wood JM, Bush B, Pitts BJR, Schwartz A (1977) Inhibition of bovine heart Nat, K+-ATPase by palmitylcarnitine and palmityl-CoA. Biochem Biophys Res Comm 74: 677–684

    Article  PubMed  CAS  Google Scholar 

  102. Woodley SL, Ikenouchi H, Barry WH (1991) Lysophosphatidylcholine increases cytosolic calcium in ventricular myocytes by direct action on the sarcolemma. J Mol Cell Cardiol 23: 671–680

    Article  PubMed  CAS  Google Scholar 

  103. Wu J, Corr PB (1992) Influence of long chain acylcarnitines on the voltage-dependent calcium current in adult ventricular myocytes. Am J Physiol (Heart Circ Physiol 32 ): H410–H417

    Google Scholar 

  104. Wu J, Corr PB (1992) Two distinct inward currents underly the development of oscillatory membrane potentials by long-chain acylcarnitines in adult ventricular myocytes. Circulation 86 (suppl I): 565 (abstract)

    Google Scholar 

  105. Yamada KA, Corr PB (1992) Effects of ß-adrenergic receptor activation on intracellular calcium and membrane potential in adult cardiac myocytes. J Cardiovasc Electrophysiol 3: 209–224

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt

About this chapter

Cite this chapter

Corr, P.B., Yamada, K.A. (1994). Selected metabolic alterations in the ischemic heart and their contributions to arrhythmogenesis. In: Zehender, M., Meinertz, T., Just, H. (eds) Myocardial Ischemia and Arrhythmia. Steinkopff. https://doi.org/10.1007/978-3-642-72505-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72505-0_2

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-72507-4

  • Online ISBN: 978-3-642-72505-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics