Advertisement

Autonomic nervous system, myocardial ischemia, and malignant ventricular arrhythmias: Experimental findings

  • G. M. De Ferrari
  • P. J. Schwartz

Summary

Acute myocardial ischemia elicits both sympathetic and vagal reflexes. Dominant sympathetic reflexes cause an increase in heart rate, myocardial oxygen consumption and a decrease in cardiac electrical stability, thus facilitating the occurrence of malignant arrhythmias. On the other hand, recent evidence from experimental studies suggests that increased vagal activity during acute myocardial ischemia decreases the likelihood of ventricular fibrillation. In a conscious animal model of sudden cardiac death, indexes of reduced vagal tone and of impaired vagal reflexes identify dogs at higher risk for ventricular fibrillation during acute myocardial ischemia.

A further direct indication that vagal activity is indeed beneficial during myocardial ischemia derives from studies involving either neural recording of vagal activity or an interaction with the parasympathetic nervous system. The latter were achieved either electrically, by the stimulation of the vagus, or pharmacologically by muscarinic agonists and antagonists.

These experimental studies indicate that: 1) indexes of vagal tone and reflexes may help to identify subjects at higher risk for sudden cardiac death; 2) interference with the autonomic nervous system causing a shift toward a vagal dominance may represent a new strategy in the prevention of sudden cardiac death.

Keywords

Sudden Cardiac Death Ventricular Fibrillation Vagal Stimulation Vagal Tone Vagal Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barber MJ, Mueller TM, Henry DP, Felten SY, Zipes DP (1983) Transmural myocardial infarction in the dog produces sympathectomy in noninfarcted myocardium. Circulation 67: 787–796PubMedCrossRefGoogle Scholar
  2. 2.
    Bailey JC, Watanabe AM, Besch HR Jr, Lathrop DA (1979) Acetylcholine antagonism of the electrophysiological effects of isoproterenol on canine cardiac Purkinje fibers. Circ Res 44: 378–383PubMedGoogle Scholar
  3. 3.
    Ben-David J, Zipes DP (1988) Differential response to right and left ansae subclaviae stimulation of early afterdepolarizations and ventricular tachycardia induced by cesium in dogs. Circulation 78: 1241–1250PubMedCrossRefGoogle Scholar
  4. 4.
    Benfey BG, Elfellah MS, Ogilvie RI, Varma DR (1984) Antiarrhythmic effects of prazosin and propranolol during coronary artery occlusion and reperfusion in dogs and pig’s. Br J Pharmacol 82: 717–725PubMedGoogle Scholar
  5. 5.
    Billman GE, Schwartz PJ, Stone HL (1982) Baroreceptor reflex control of heart rate: A predictor of sudden cardiac death. Circulation 66: 874–880PubMedCrossRefGoogle Scholar
  6. 6.
    Blair RW, Shimizu T, Bishop VS (1980) The role of vagal afferents in the reflex control of left ventricular refractory period in the cat. Circ Res 46: 378–386PubMedGoogle Scholar
  7. 7.
    Bolli R, Brandon TA, Fischer DJ, Taylor AA, Miller RR (1982) Alpha-adrenergic blockade does not prevent arrhythmias during coronary occlusion and reperfusion in the dog. Clin Res 30: 173A.Google Scholar
  8. 8.
    Cerati D, Schwartz PJ (1991) Single cardiac vagal fiber activity, acute myocardial ischemia, and risk for sudden death. Circ Res 69: 1389–1401PubMedGoogle Scholar
  9. 9.
    Chadda KD, Banka VS, Helfant RH (1974) Rate dependent ventricular ectopia following acute coronary occlusion. Circulation 49: 654–659PubMedGoogle Scholar
  10. 10.
    Corr PB, Gillis RA (1974) Role of the vagus nerves in the cardiovascular changes induced by coronary occlusion. Circulation 49: 86–97PubMedGoogle Scholar
  11. 11.
    Corr PB, Gillis RA (1975) Effect of autonomic neural influences on the cardiovascular changes induced by coronary occlusion. Am Heart J 89: 766–774CrossRefGoogle Scholar
  12. 12.
    Davey MJ (1980) Relevant features of the pharmacology of prazosin. J Cardiovasc Pharmacol 2: 5287–5301Google Scholar
  13. 13.
    De Ferrari GM, Vanoli E, Stramba-Badiale M, Hull SS Jr, Foreman RD, Schwartz PJ (1991) Vagal reflexes and survival during acute myocardial ischemia in conscious dogs with healed myocardial infarction. Am J Physiol 261: H63 - H69PubMedGoogle Scholar
  14. 14.
    De Ferrari GM, Vanoli E, Curcuruto P, Tommasini G, Schwartz PJ (1992) Prevention of life-threatening arrhythmias by pharmacologic stimulation of the muscarinic receptors with oxotremorine. Am Heart J 124: 883–890PubMedCrossRefGoogle Scholar
  15. 15.
    De Ferrari GM, Salvati P, Grossoni M, Ukmar G, Vaga L, Patrono C, Schwartz PJ (1993) Pharmacologic modulation of the autonomic nervous system in the prevention of sudden cardiac death. J Am Coll Cardiol July 22: 283–290CrossRefGoogle Scholar
  16. 16.
    De Ferrari GM, Mantica M, Vanoli E, Hull SS Jr, Schwartz PJ (1993) Scopolamine increases vagal tone and vagal reflexes in patients after myocardial infarction. J Am Coll Cardiol 22: 1327–1334PubMedCrossRefGoogle Scholar
  17. 17.
    De Ferrari GM, Zaza A (1994) Drugs acting on cholinergic receptors. In: Cardiovascular Pharmacology and Therapeutics ( Singh BN, Dzau VJ, Van Houtten P, Woosley RL, Eds.). Churchill Livingstone, New York pp. 125–144Google Scholar
  18. 18.
    Einbrodt (1859) Ueber Herzreizung and ihr Verhaeltnis zum Blutdruck. Akademie der Wissenschaften (Vienna). Sitzungberichte 38: 345Google Scholar
  19. 19.
    Feigl EO (1967) Sympathetic control of coronary circulation. Circ Res 20: 262–271PubMedGoogle Scholar
  20. 20.
    Fleming JW, Watanabe AM (1986) Biochemical mechanisms of parasympathetic regulation of cardiac function. In Fozzard HA, Haber E, Katz AM, Morgan HE, eds. The heart and cardiovascular system. Raven Press, New York, pp. 1679–1688Google Scholar
  21. 21.
    Garrey WE (1908) Some effects of cardiac nerves upon ventricular fibrillation. Am J Physiol 21: 283Google Scholar
  22. 22.
    Gilman AG (1984) G proteins and dual control of adenylate cyclase. Cell 36: 577–579PubMedCrossRefGoogle Scholar
  23. 23.
    Gnecchi Ruscone T, Lombardi F, Malfatto G, Malliani A (1987) Attenuation of baroreceptive mechanisms by cardiovascular sympathetic afferent fibers. Am J Physiol 253: H787 - H791Google Scholar
  24. 24.
    Goldstein RE, Karsh RB, Smith ER, Orlando M, Norman D, Farnham G, Redwood DR, Epstein SE (1973) Influence of atropine and of vagally mediated bradycardia on the occurrence of ventricular arrhythmias following acute coronary occlusion in closed-chest dogs. Circulation 47: 1180–1190PubMedGoogle Scholar
  25. 25.
    Goldberg RJ (1989) Declining out-of-hospital sudden coronary death rates: Additional pieces of the epidemiologic puzzle. Circulation 79: 1369–1373PubMedCrossRefGoogle Scholar
  26. 26.
    Han J, Millet D, Chizzonitti B, Moe GK (1966) Temporal dispersion of recovery of. excitability in atrium and ventricle as a function of heart rate. Am Heart J 71: 481–487PubMedCrossRefGoogle Scholar
  27. 27.
    Hering HE (1901) Die Myoerethischen Unregelmaessigkeiten des Herzens. Prager Medizinische Wochenschrift 26: 7Google Scholar
  28. 28.
    Hull SS Jr., Evans AR, Vanoli E, Adamson PB, Stramba-Badiale M, Albert DE, Foreman RD, Schwartz PJ (1990) Heart rate variability before and after myocardial infarction in conscious dogs at high and low risk of sudden death. J Am Coll Cardiol 16: 978–985PubMedCrossRefGoogle Scholar
  29. 29.
    Janse MJ, Schwartz PJ, Wilms-Schopman F, Peters R, Durrer D (1985) Effects of unilateral stellate ganglion stimulation and ablation on electrophysiological changes induced by acute myocardial ischemia in dogs. Circulation 72: 585–595PubMedCrossRefGoogle Scholar
  30. 30.
    Kent KM, Smith ER, Redwood DR, Epstein SE (1973) Electrical stability of acutely ischemic myocardium: influences of heart rate and vagal stimulation. Circulation 47: 291–298PubMedGoogle Scholar
  31. 31.
    Kliks BR, Burgess MJ, Abildskov JA (1975) Influence of sympathetic tone on ventricular fibrillation threshold during experimental coronary occlusion. Am J Cardiol 36: 45–49PubMedCrossRefGoogle Scholar
  32. 32.
    Kolman BS, Verrier RL, Lown B (1976) The effect of vagus nerve stimulation upon vulnerability of the canine ventricle: Role of the sympathetic parasympathetic interactions. Circulation 52: 578–585Google Scholar
  33. 33.
    La Rovere MT, Specchia G, Mortara A, Schwartz PJ (1988) Baroreflex sensitivity, clinical correlates and cardiovascular mortality among patients with a first myocardial infarction. A prospective study. Circulation 78: 816–824Google Scholar
  34. 34.
    Levy MN, Blattberg B (1976) Effect of vagal stimulation on the overflow of norepinephrine into the coronary sinus during cardiac sympathetic nerve stimulation in the dog. Circ Res 38: 81–85PubMedGoogle Scholar
  35. 35.
    Litovsky SH, Antzelevitch C (1990) Difference in the electrophysiological response of canine ventricular subendocardium and subepicardium to acetylcholine and isoproterenol. A direct effect of acetylcholine in ventricular myocardium. Circ Res 67: 615–627PubMedGoogle Scholar
  36. 36.
    Löffelholz K, Muscholl E (1969) A mùscarinic inhibition of the noradrenaline release evoked by postganglionic sympathetic nerve stimulation. Naunyn Schmiedebergs Arch Pharmacol 265: 1–15PubMedCrossRefGoogle Scholar
  37. 37.
    Lombardi F, Casalone C, Della Bella P, Malfatto G, Pagani M, Malliani A (1984) Global versus regional myocardial ischemia: differences in cardiovascular and sympathetic responses in cats. Cardiovasc Res 18: 14–23PubMedCrossRefGoogle Scholar
  38. 38.
    Lown B, Fakhro AM, Hood WB, Thorn GW (1967) The coronary care unit. JAMA 199: 188–198.PubMedCrossRefGoogle Scholar
  39. 39.
    Malliani A, Schwartz PJ, Zanchetti A (1969) A sympathetic reflex elicited by experimental coronary occlusion. Am J Physiol 217: 703–709PubMedGoogle Scholar
  40. 40.
    Malliani A, Recordati G, Schwartz PJ (1973) Nervous activity of afferent cardiac sympathetic fibers with atrial and ventricular endings. J Physiol (London) 229: 457–469Google Scholar
  41. 41.
    Maroko PR, Kjekshus JK, Sobel BE, Watanabe T, Covell JW, Ross J Jr., Braunwald E (1971) Factors influencing infarct size following experimental coronary artery occlusions. Circulation 43: 67–74PubMedGoogle Scholar
  42. 42.
    Martins JB, Zipes DP (1980) Effects of sympathetic and vagal nerves on recovery properties of the endocardium and epicardium of the canine left ventricle. Circ Res 46: 100–110PubMedGoogle Scholar
  43. 43.
    Mohrman DE, Feigl EO (1978) Competition between sympathetic vasodilation in the canine coronary circulation. Circ Res 42: 79–86PubMedGoogle Scholar
  44. 44.
    Myers RW, Pearlman AS, Hyman RM, Goldstein RA, Kent KM, Goldstein RE, Epstein SE (1974) Beneficial effects of vagal stimulation and bradycardia during experimental acute myocardial ischemia. Circulation 49: 943–947PubMedGoogle Scholar
  45. 45.
    Pandey RC, Srivastava RD, Bathnagar VN (1979) Effect of unilateral stellate ganglion blockade and stimulation on experimental arrhythmias. Int J Physiol Pharmacol 23: 305–314Google Scholar
  46. 46.
    Priori SG, Zuanetti G, Schwartz PJ (1988) Ventricular fibrillation induced by the interaction between acute myocardial ischemia and sympathetic hyperactivity: Effect of Nifedipine. Am Heart J 116: 37–45PubMedCrossRefGoogle Scholar
  47. 47.
    Prystowsky EN, Jackman WM, Rinkenberger RL, Heger JJ, Zipes DP (1981) Effect of autonomic blockade on ventricular refractoriness and atrioventricular nodal conduction in humans. Evidence supporting a direct cholinergic action on ventricular muscle refractoriness. Circ Res 49: 511–518PubMedGoogle Scholar
  48. 48.
    Recordati G, Schwartz PJ, Pagani M, Malliani A, Brown AM (1971) Activation of cardiac vagal receptors during myocardial ischemia. Experientia 27: 1423–1424PubMedCrossRefGoogle Scholar
  49. 49.
    Redwood DR, Smith ER, Epstein SE (1972) Coronary artery occlusion in the conscious dog: Effects of alterations in heart rate and arterial pressure on the degree of myocardial ischemia. Circulation 46: 323–332PubMedGoogle Scholar
  50. 50.
    Scherf D (1929) Untersuchungen ueber die Entstehungweise der Extrasystolen and der extrasystolischen Allorhythmien. Z Exp Med 65: 198CrossRefGoogle Scholar
  51. 51.
    Schwartz PJ, Pagani M, Lombardi F, Malliani A, Brown AM (1973) A cardiocardiac sympatho-vagal reflex in the cat. Circ Res 32: 215–220PubMedGoogle Scholar
  52. 52.
    Schwartz PJ, Foreman RD, Stone HL, Brown AM, (1976) Effect of dorsal root section on the arrhythmias associated with coronary occlusion. Am J Physiol 231: 923–928PubMedGoogle Scholar
  53. 53.
    Schwartz PJ, Stone HL, Brown AM (1976) Effects of unilateral stellate ganglion blockade on the arrhythmias associated with coronary occlusion. Am Heart J 92: 589–599PubMedCrossRefGoogle Scholar
  54. 54.
    Schwartz PJ, Snebold NG, Brown AM (1976) Effects of unilateral cardiac sympathetic denervation on the ventricular fibrillation threshold. Am J Cardiol 37: 1034–1041PubMedCrossRefGoogle Scholar
  55. 55.
    Schwartz PJ, Stone HL (1977) Tonic influence of the sympathetic nervous system on myocardial reactive hyperemia and on coronary blood flow distribution. Circ Res 41: 51–58PubMedGoogle Scholar
  56. 56.
    Schwartz PJ, Vanoli E (1981) Cardiac arrhythmias elicited by interaction between acute myocardial ischemia and sympathetic hyperactivity: A new experimental model for the study of antiarrhythmic drugs. J Cardiovasc Pharmacol 3: 1251–1259PubMedCrossRefGoogle Scholar
  57. 57.
    Schwartz PJ, Billman GE, Stone HL (1984) Autonomic mechanisms in ventricular fibrillation induced by myocardial ischemia during exercise in dogs with healed myocardial infarction. An experimental preparation for sudden cardiac death. Circulation 69: 790–800PubMedCrossRefGoogle Scholar
  58. 58.
    Schwartz PJ, Vanoli E, Zaza A, Zuanetti G (1985) The effect of antiarrhythmic drugs on life-threatening arrhythmias induced by the interaction between acute myocardial ischemia and sympathetic hyperactivity. Am Heart J 109: 937–948PubMedCrossRefGoogle Scholar
  59. 59.
    Schwartz PJ, Stone HL (1985) The analysis and modulation of autonomic reflexes in the prediction and prevention of sudden death. In: Cardiac Electrophysiology and arrhythmias: ( Zipes DP, Jalife J, Eds.) Grune and Stratton, New York, pp. 165–176Google Scholar
  60. 60.
    Schwartz PJ, Priori SG, Vanoli E, Zaza A, Zuanetti G (1986) Efficacy of diltiazem in two experimental models of sudden death. J Am Coll Cardiol 8: 661–668PubMedCrossRefGoogle Scholar
  61. 61.
    Schwartz PJ (1987) Manipulation of the autonomic nervous system in the prevention of sudden cardiac death. In: Twenty years of cardiac electrophysiology. ( Brugada P, Wellens HJJ, Eds.) Futura Publishing Co., Mount Kisco, NY, pp. 741–765Google Scholar
  62. 62.
    Schwartz Pi, Vanoli E, Stramba-Badiale M, De Ferrari GM, Billman GE, Foreman RD (1988) Autonomic mechanisms and sudden death. New insight from the analysis of baroreceptor reflexes in conscious dogs with and without a myocardial infarction. Circulation 78: 969–979Google Scholar
  63. 63.
    Schwartz PJ, Priori SG (1990) Sympathetic nervous system and cardiac arrhythmias. In: Cardiac electrophysiology. From cell to bedside. ( Zipes DP, Jalife J, Eds.) WB Sanders Co., Philadelphia, PA, pp. 330–343Google Scholar
  64. 64.
    Schwartz Pi, La Rovere MT, Vanoli E (1992) Autonomic nervous system and sudden cardiac death. Circulation 85 ( Suppl. I): 177–191Google Scholar
  65. 65.
    Sheridan DJ, Penkoske PA, Sobel BE, Corr PB (1980) Alpha-adrenergic contributions to dysrhythmia during myocardial ischemia and reperfusion in cats. J Clin Invest 65: 161–171PubMedCrossRefGoogle Scholar
  66. 66.
    Smeets JLRM, Allessie MA, Lammers WJEP, Bonke FIM, Hollen J (1986) The wavelength of the cardiac impulse and reentrant arrhythmias in isolated rabbit atrium: The role of heart rate, autonomic transmitters, temperature and potassium. Circ Res 58: 96–108PubMedGoogle Scholar
  67. 67.
    Thames MD, Klopfenstein HS, Abboud FM, Mark AL, Walker JL (1978) Preferential distribution of inhibitory cardiac receptors with vagal afferents to the inferoposterior wall of the left ventricle activated during coronary occlusion in the dog. Circ Res 43: 512–519PubMedGoogle Scholar
  68. 68.
    Thoren P (1978) Vagal reflexes elicited by left ventricular C-fibers during myocardial ischemia in cats. In: Neural mechanisms in cardiac arrhythmias ( Schwartz PJ, Brown AM, Malliani A, Zanchetti A, Eds.) Raven Press, New York, pp. 179–190Google Scholar
  69. 69.
    Vanoli E, De Ferrari GM, Stramba-Badiale M, Hull SS Jr, Foreman RD, Schwartz Pi (1991) Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ Res 68: 1471–1481PubMedGoogle Scholar
  70. 70.
    Vanoli E, Hull SS Jr., Foreman RD, Ferrari A, Schwartz PJ (1994) alphas adrenergic blockade and sudden cardiac death. J Cardiovasc Electrophysiol 5: 76–83Google Scholar
  71. 71.
    Wit AL, Rosen MR (1986) Afterdepolarizations and triggered activity. In: Fozzard HA, Haber E, Jennings RB et al. (eds.): The heart and the cardiovascular system. New York, Raven Press, pp. 1449–1490Google Scholar
  72. 72.
    Yusuf S, Teo KK (1991) Approaches to prevention of sudden death: need for fundamental reevaluation. J Cardiovasc Electrophysiol 2 (Suppl): S233 - S239Google Scholar
  73. 73.
    Zuanetti G, De Ferrari GM, Priori SG, Schwartz PJ (1987) Protective effect of vagal stimulation on reperfusion arrhythmias in cats. Circ Res 61: 429–435PubMedGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt 1994

Authors and Affiliations

  • G. M. De Ferrari
    • 1
    • 2
  • P. J. Schwartz
    • 3
    • 1
    • 4
  1. 1.Istituto di Clinica Medica Generale e Terapia Medica Universita’ degli Studi di MilanoCentro di Fisiologia Clinica e IpertensioneMilanoItaly
  2. 2.Divisione di CardiologiaOspedale Maggiore Policlinico IRCCS MilanoItaly
  3. 3.Dipartimento di MedicinaUniversita’ degli Studi PaviaPaviaItaly
  4. 4.Istituto di Clinica Medica Generale e Terapia MedicaUniversity of MilanoMilanoItaly

Personalised recommendations