Skip to main content

Calcium homeostasis, myocardial ischemia and arrhythmogenic impact

  • Chapter
Myocardial Ischemia and Arrhythmia
  • 783 Accesses

Summary

Ventricular tachyarrhythmias can originate from disturbed impulse conduction (reentry) or from abnormal impulse generation, i.e., focal activation by normal or abnormal automaticity or by triggered activity due to early or late afterdepolarisations. Although reentry is traditionally considered as the predominant mechanism of tachyarrhythmias in ischaemic heart disease, the coexistence of reentry, intramural reentry and focal nonreentrant mechanisms as initiating causes has been demonstrated. Presently, the quantitative assessment of the relative impact of these various mechanisms appears impossible. Theoretically, all these arrhythmogenic mechanisms may be sensitive to cytosolic Ca++ overload: cytosolic Ca++ and acidosis can reduce intercellular conduction by altering gating kinetics of intercellular gap junctions, thereby facilitating reentry; late after depolarisations result from Ca++-induced Ca++ release and subsequent activation of the rheogenic Na+-Ca++-exchanger (and probably of Ca++-dependent cation channels); other arrhythmogenic mechanisms are not directly elicitated by cytosolic Ca -overload, but a reduced intercellular conductivity (due to Ca overload-induced alteration in gating of gap junctions) will reduce the stability of the cellular network against any local depolarizing stimulus. In hemodynamically overloaded ventricular myocardium, the myocyte phenotype of the hypertrophied cardiocytes is shifted towards a more “neonatal-like” phenotype. In human myocardium, this phenotype shift includes downregulation of the sarcoplasmatic reticulum Ca++-ATPase and an upregulation of the sarcolemmal Na+-Ca ++-exchanger, together with a rather normal depolarisation-induced Ca++-influx and a reduced density of intercellular gap junctions. This phenotype can be considered as “fragile Ca + + homeostasis”, prone to cytosoloic Ca++ overload and associated with the enhanced susceptibility of overloaded myocardium to arrhythmogenesis. The augmentation of the cytosolic Ca++ rather early during ischemia is demonstrable in many experimental models, but the mechanisms contributing to this cytosolic Ca++-overload are only partially understood. Indirect arguments indicate that ischemia causes more disturbance of the cytosolic Ca++-homeostasis in myocardium with overload induced hypertrophy than in normal hearts. The available evidence indicates that hemodynamically overloaded, hypertrophied myocardium has a greater susceptibility for Ca++-overload-induced arrhythmogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allgeier J, Goetz RM, Studer R, Reinecke H, Holtz J (1992) Involvement of bradykinin in the cardioreparation by chronic quinapril in rats with hypertensive left ventricular hypertrophy. Circulation 86 (suppl I): I - 329

    Google Scholar 

  2. Anderson PAW (1989) Maturation and cardiac contractility. Cardiol Clin 7: 209–225

    PubMed  CAS  Google Scholar 

  3. Aronson RS (1981) Afterpotentials and triggered activity in hypertrophied myocardium from rats with renal hypertension. Circ Res 48: 720–727

    PubMed  CAS  Google Scholar 

  4. Billman GE, Mcllroy B, Johnson JD (1991) Elevated myocardial calcium and its role in sudden cardiac death. FASEB J 5: 2586–2592

    CAS  Google Scholar 

  5. Binah O, Rosen MR (1992) Mechanisms of ventricular arrhythmias. Circulation 85 [suppl I]: I-25—I-31

    Google Scholar 

  6. Bisaha JG, Bader D (1992) Commitment and differentiation of cardiac myocytes. Trends Cardiovasc Med 2: 27–32

    Article  PubMed  Google Scholar 

  7. Burt JM (1987) Block of intercellular communication: interaction of intracellular H and Ca’ ÷. Am J Physiol 253: C607 — C612

    PubMed  CAS  Google Scholar 

  8. Burt JM, Spray DC (1988) Single channel events and gating behavior of the cardiac gap junction channel Proc Natl Acad Sci USA 85: 3431–3434

    CAS  Google Scholar 

  9. Chien KR, Knowlton KU, Zhu H, Chien S (1991) Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response (review). FASEB J 5: 3037–3046

    CAS  Google Scholar 

  10. Chin TK, Friedman WF, Klitzner TS (1990) Developmental changes in cardiac myocyte calcium regulation. Circ Res 67: 574–579

    PubMed  CAS  Google Scholar 

  11. Collin T, Wang JJ, Nargeot J, Schwartz A (1993) Molecular cloning of three isoforms of the L-type voltage-dependent calcium channel ß subunit from normal human heart. Circ Res 72: 1337–1344

    PubMed  CAS  Google Scholar 

  12. Collins MN, Billman GE (1989) Autonomic response to coronary occlusion in animals susceptible to ventricular fibrillation. Am J Physiol 257: H1886 — H1894

    PubMed  CAS  Google Scholar 

  13. Corr PB, Gross RW, Sobel BE (1984) Amphiphatic metabolites and membrane dysfunction in ischemic myocardium. Circ Res 55: 135–154

    PubMed  CAS  Google Scholar 

  14. Datorre SD, Creer MH, Pogwizd SM, Corr PB (1991) Amphiphatic lipid metabolites and their relation to arrhythmogenesis in the ischemic heart. J Mol Cell Cardiol 23: 11–22

    Article  PubMed  CAS  Google Scholar 

  15. De La Bastie D, Levitski D, Rappaport L, Mercadier JJ, Marotte F, Wisnewsky C, Brovkovich V, Schwartz K, Lompré AM (1990) Function of the sarcoplasmic reticulum and expression of its Ca’ -ATPase gene in pressure overload-induced cardiac hypertrophy in the rat. Circ Res 66: 554–564

    PubMed  Google Scholar 

  16. De Mello WC (1985) Intercellular communication in cardiac muscle: phyiologic and pathologic implications. In: Zipes DP, Jalife J (eds) Cardiac electrophysiology and arrhythmias, Grune & Stratton New York, pp 65–72

    Google Scholar 

  17. Diebold RJ, Koch WJ, Ellinor PT, et al. (1992) Mutually exclusive exon splicing of the cardiac calcium channel al subunit gene generates developmentally regulated isoforms in the rat heart. Proc Natl Acad Sci USA 89: 1497–1501

    Article  PubMed  CAS  Google Scholar 

  18. Dillon SM, Allesie MA, Ursell PC, Wit AL (1988) Influences of anisotropic tissue structure and reentrant circuits in the epicardial border zone of subacute canine infarcts. Circ Res 63: 182–206

    PubMed  CAS  Google Scholar 

  19. Fabiato A (1982) Calcium release in skinned cardiac cells: variation with species, tissues, and development. Fed Proc 41: 2238–2244

    PubMed  CAS  Google Scholar 

  20. Feher JJ, Briggs FN, Hess ML (1980) Characterization of cardiac sarcoplasmic reticulum from ischemic myocardium: comparison of isolated sarcoplasmic reticulum with unfractionated homogenates. J Mol Cell Cardiol 12: 427–432

    Article  PubMed  CAS  Google Scholar 

  21. Fishman GI (1992) Connexins and the heart. Trends Cardiovasc Med 2: 50–55

    Article  PubMed  CAS  Google Scholar 

  22. Fozzard HA (1992) Afterdepolarizations and triggered activity. Basic Res Cardiol 87 [suppl 2]: 105–113

    PubMed  CAS  Google Scholar 

  23. Garan H, Fallon JT, Rosenthal S, Ruskin JM (1987) Endocardial, intramural, and epicardial activation patterns during sustained monomorphic ventricular tachycardia in late canine myocardial infarction. Cire Res 60: 879–89

    CAS  Google Scholar 

  24. Haigney MCP, Miyata H, Lakatta EG, Stern MD, Silverman HS (1992) Dependence of hypoxic cellular calcium loading on Na +-Ca + + -exchange. Circ Res 71: 547–557

    PubMed  CAS  Google Scholar 

  25. Haigney MCP, Miyata H, Lakatta EG, Stern MD, Silverman HS (1992) Dependence of hypoxic cellular calcium loading on Na +-Ca + + -exchange. Circ Res 71: 547–557

    PubMed  CAS  Google Scholar 

  26. Hoffman BF, Cranefield PF (1964) The physiological basis of cardiac arrhythmias. Am J Med 37: 670–689

    Article  PubMed  CAS  Google Scholar 

  27. Holtz J (1992) Bedeutung der Myokard-Hypertrophie bei Herzinsuffizienz. Z Kardiol 81 [suppl 4]: 41–48

    PubMed  Google Scholar 

  28. Holtz J (1993) Pathophysiology of heart failure and the renin-angiotensin system. Basic Res Cardiol 88 [suppl 1]: 183–201

    PubMed  CAS  Google Scholar 

  29. Hoyt RH, Cohen ML, Saffitz JE (1989) Distribution and three-dimensional structure of the intercellular junctions in canine myocardium. Circ Res 64: 563–574

    PubMed  CAS  Google Scholar 

  30. Hullin R, Biel M, Flockerzi V, Hofmann F (1993) Tissue-specific expression of calcium channels. Trends Cardiovasc Med 3: 48–53

    Article  PubMed  CAS  Google Scholar 

  31. Huynh TV, Chen F, Wetzel GT, Friedman WF, Klitzner TS (1992) Developmental changes in membrane Ca’ and K + currents in fetal, neonatal and adult heart cells. Circ Res 70: 508–515

    PubMed  CAS  Google Scholar 

  32. Imai K, Wang T, Millard RW, Ashraf M, Krainas EG, Asano G, De Gende AOG, Nagao T, Solaro RJ, Schwartz A (1983) Ischemia-induced changes in canine cardiac sarcoplasmic reticulum. Cardiovasc Res 17: 696–709

    Article  PubMed  CAS  Google Scholar 

  33. Jarmakani JM, Nakanishi T, George BL, Bers D (1982) Effect of extracellular calcium on myocardial mechanical function in the neonatal rabbit. Dev Pharmacol Ther 5: 1–13

    PubMed  CAS  Google Scholar 

  34. Josephson ME, Buxton AE, Marchlinski FR, Doherty JU, Cassidy DM, Kienzle MG, Vassallo JE, Miller JM, Almendral J, Grogan W (1985) Sustained ventricular tachycardia in coronary artery disease: evidence for a reentrant mechanism. In: Zipes DP, Jalife J (eds): Cardiac electrophysiology and arrhythmias, Grune & Stratton, New York pp. 409–418

    Google Scholar 

  35. Kanter HL, Laing JG, Beau SL. Beyer EC, Saffitz JE (1993) Distinct patterns of connexin expression in canine Purkinje fibers and ventricular muscle. Circ Res 72: 1124–1131

    PubMed  CAS  Google Scholar 

  36. Kanter HL, Saffitz JE, Beyer EC (1992) Cardiac myocytes express multiple gap junction proteins. Circ Res 70: 438–444

    PubMed  CAS  Google Scholar 

  37. Kaplan P, Hendrikx M, Mattheussen M, Mubagwa K, Flameng W (1992) Effect of ischemia and reperfusion on sarcoplasmic reticulum calcium uptake. Circ Res 71: 1123–1130

    PubMed  CAS  Google Scholar 

  38. Katz AM (1990) Cardiomyopathy of overload: a major determinant of prognosis in congestive heart failure. N Engl J Med 322: 100–110

    Article  PubMed  CAS  Google Scholar 

  39. Katz AM (1992) Physiology of the heart. Raven Press, New York

    Google Scholar 

  40. Kihara Y, Grossman W, Morgan JP (1989) Direct measurement of changes in intracellular calcium transients during hypoxia, ischemia, and reperfusion of the intact mammalian heart. Circ Res 65: 1029–1044

    PubMed  CAS  Google Scholar 

  41. Kléber G (1992) The potential role of Ca ++ for electrical cell-to-cell uncoupling and conduction block in myocardial tissue. Basic Res Cardio 87 [suppl 2]: 131–143

    Google Scholar 

  42. Klitzner T, Friedman WF, Klitzner TS (1988) Excitation-contraction coupling in developing myocardium: evidence from voltage clamp studies. Pediatr Res 23: 428–432

    Article  PubMed  CAS  Google Scholar 

  43. Komuro I, Kurabayashi M, Shibazaki Y, Takaku F, Yazaki Y (1989) Molecular cloning and characterization of the Ca’ + Mg’ -dependent adenosine triphosphatase from rat cardiac sarcoplasmic reticulum. J Clin Invest 83: 1102–1108

    Article  PubMed  CAS  Google Scholar 

  44. Koretsune Y, Marban E (1990) Mechanism of ischemic contracture in ferret hearts: relative roles of calcium elevation and ATP depletion. Am J Physiol 258: H9 — H16

    PubMed  CAS  Google Scholar 

  45. Kramer JB, Saffitz JE, Witkowski FX, Corr PB (1985) Intramural reentry as a mechanism of ventricular tachycardia during evolving canine myocardial infarction. Circ Res 56: 736–754

    PubMed  CAS  Google Scholar 

  46. Krause SM, Hess ML (1984) Characterization of cardiac sarcoplasmic reticulum dysfunction during short term, normothermic, global ischemia. Circ Res 55: 176–184

    PubMed  CAS  Google Scholar 

  47. Ladenson PW, Sherman SI, Baughman KL, Ray PE, Feldman AM (1992) Reversible alterations in myocardial gene expression in a young man with dilated cardiomyopathy and hypothyroidism. Proc Natl Acad Sci USA 89: 5251–5255

    Article  PubMed  CAS  Google Scholar 

  48. Lee HC, Mohabir R, Smith N, Franz MR, Clusin WT (1988) Effect of ischemia on calcium dependent fluorescence transients in rabbit hearts containing indo 1: Correlation with monophasic action potentials and contraction. Circulation 78: 1047–1059

    Google Scholar 

  49. Lee HC, Smith N, Mohabir R, Clusin WT (1987) Cytosolic calcium transients from the beating mammalian heart. Proc Natl Acad Sci USA 84: 7793–7797

    Article  PubMed  CAS  Google Scholar 

  50. Lerman BB (1993) Response of nonreentrant catecholamine-mediated ventricular tachycardia to endogenous adenosine and acetylcholine: evidence for myocardial receptor-mediated effects. Circulation 87: 382–390

    PubMed  CAS  Google Scholar 

  51. Levy MN (1989) Role of calcium in arrhythmogenesis. Circulation 80 [suppl IV]: IV23–1V30

    Google Scholar 

  52. Luke RA, Saffitz JE (1991) Remodelling of ventricular conduction pathways in healed canine infarct border zones. J Clin Invest 87: 1594–1602

    Article  PubMed  CAS  Google Scholar 

  53. Mahoney L (1988) Maturation of calcium transport in cardiac sarcoplasmic reticulum. Pediatr Res 24: 639–643

    Google Scholar 

  54. Marban E, Kitakaze M, Koretsune Y, Yue DT, Chacko VP, Pike MM (1990) Quantification of [Ca’] in perfused hearts: Critical evaluation of the 5F-BAPTA and nuclear magnetic resonance method as applied to the study of ischemic and reperfusion. Circ Res 66: 1255–1267

    PubMed  CAS  Google Scholar 

  55. Marban E, Kitakaze M, Kusuoka H, Porterfield JK, Yue DT (1987) Intracellular free calcium concentration measured with 19F NMR spectroscopy in intact ferret hearts. Proc Natl Acad Sci USA 84: 6005–6009

    Article  PubMed  CAS  Google Scholar 

  56. Marban E, Koretsune Y, Corretti M, Chacko VP, Kusuoka H (1989) Calcium and its role in myocardial cell injury during ischemia and reperfusion. Circulation 80 (suppl IV): IV 17–1V22

    Google Scholar 

  57. Maylie JG (1982) Excitation-contraction coupling in neonatal and adult myocardium of cat. Am J Physiol 242: H834 — H843

    PubMed  CAS  Google Scholar 

  58. Mercadier JJ, Lompré AM, Duc P, Boheler KR, Fraysse JB, Wisnewsky C, Allen P, Komajda M, Schwartz K (1990) Altered sarcoplasmic reticulum Ca’ -ATPase gene expression in the human ventricle during endstage heart failure. J Clin Invest 85: 305–309

    Article  PubMed  CAS  Google Scholar 

  59. Miyata H, Lakkatta EG, Stern MD, Silverman HS (1992) Relation of mitochondrial and cytosolic free calcium to cardiac myocyte recovery after exposure to anoxia. Circ Res 71: 605–613

    PubMed  CAS  Google Scholar 

  60. Nadal-Ginard B, Mandavi V (1990) Molecular basis of cardiac performance. J Clin Invest 84: 1693–1700

    Article  Google Scholar 

  61. Nagai R, Zarain-Herzberg A. Brandi CJ, Fuji J, Taga M, MacLennan DH, Alpert NR, Periasamy M (1989) Regulation of myocardial Ca“-ATPase and phospholamban mRNA expression in response to pressure overload and thyroid hormone. Proc Natl Acad Sci USA 86: 2966–2970

    Article  PubMed  CAS  Google Scholar 

  62. Nordin C (1989) Abnormal Ca++ handling and the generation of ventricular arrhythmias in congestive heart failure. Heart failure 5: 143–154

    Google Scholar 

  63. Osaka T, Joyner RW (1991) Developmental changes in calcium currents of rabbit ventricular cells. Circ Res 68: 788–796

    PubMed  CAS  Google Scholar 

  64. Osaka T, Joyner RW (1992) Developmental changes in the ß-adrenergic modulation of calcium currents in rabbit ventricular cells. Circ Res 70: 104–115

    PubMed  CAS  Google Scholar 

  65. Philipson KD (1992) Cardiac sodium-calcium exchange research: new directions. Trends Cardiovasc Med 2: 12–14

    Article  PubMed  CAS  Google Scholar 

  66. Pogwizd SM, Corr PB (1987) Reentrant and nonreentrant mechanisms contribute to arrhythmogenesis during early myocardial ischemia: results using three-dimensional mapping. Circ Res 61: 352–371

    PubMed  CAS  Google Scholar 

  67. Pogwizd SM, Corr PB (1987) Electrophysiologic mechanisms underlying arrhythmias due to reperfusion of ischemic myocardium. Circulation 76: 404–426

    Article  PubMed  CAS  Google Scholar 

  68. Reinecke H, Bilger J, Hollmann A, Holtz J, Just H, Müller B, Phillipson KD, Studer R, Drexler H (1992) Veränderungen der Genexpression von SR-Ca’-ATPase and Na+/CaZ+-Exchanger im Restmyokard nach Infarkt bei der Ratte. Z Kardiol 81 [suppl 1]: 113

    Google Scholar 

  69. Reinecke H, Studer R, Philipson KD, Bilger J, Eschenhagen T, Böhm M, Just H, Holtz J, Drexler H (1992) Myocardial gene expression of Na+/CaZ+-exchanger and sarcoplasmic reticulum Cat +- ATPase in human heart failure. Circulation 86 [suppl I]: I - 860

    Google Scholar 

  70. Reinecke H, Studer R, Philipson KD, Bilger J, Eschenhagen T, Böhm M, Just H, Holtz J, Drexler H (1992) Myocardial gene expression of Na+/CaZ+-exchanger and sarcoplasmic reticulum Cat +- ATPase in human heart failure. Circulation 86 [suppl I]: I - 860

    Google Scholar 

  71. Renlund DG, Gerstenblith G, Lakatta EG, Jacobus WE, Kallman CH, Weisfeldt ML (1984) Perfusate sodium during ischemia modifies post-ischemic functional and metabolic recovery in the rabbit heart. J Mol Cell Cardiol 16: 795–801

    Article  PubMed  CAS  Google Scholar 

  72. Saffitz JE; Corr PB, Sobel BE (1993) Arrhythmogenesis and ventricular dysfunction after myocardial infarction. Circulation 87: 1742–1745

    PubMed  CAS  Google Scholar 

  73. Saffitz JE, Hoyt RH, Luke RA, Kanter HL, Beyer EC (1992) Cardiac myocyte interconnections at gap junctions: role in normal and abnormal electrical conduction. Trends Cardiovasc Med 2: 56–60

    Article  PubMed  CAS  Google Scholar 

  74. Schwartz K, Mercadier JJ, Swynghedauw B, Lompré AM (1988) Modification of gene expression in cardiac hypertrophy. Heart Failure 4: 154–163

    Google Scholar 

  75. Simpson PC (1990) Regulation of hypertrophy and gene transcription in cultured heart muscle cells. In: Roberts R, Schneider MD (eds): Molecular biology of the cardiovascular system. Alan R Liss Inc, New York, pp. 125–133

    Google Scholar 

  76. Spear JF, Michelson EC, Moore EN (1983) Cellular electrophysiologic characteristics of chronically infarcted myocardium in dogs susceptible to sustained ventricular tachyarrhythmias J Am Coll Cardiol 1: 1099–1110

    CAS  Google Scholar 

  77. Steenbergen C, Murphy E, Levy L, London RE (1987) Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circ Res 60: 700–707

    PubMed  CAS  Google Scholar 

  78. Steenbergen C, Murphy E, Watt JA, London RE (1990) Correlation between cytosolic free calcium contracture, ATP, and irreversible ischemic injury in perfused rat heart. Circ Res 66: 135–146

    Google Scholar 

  79. Studer R, Reinecke H, Vetter R, Holtz J, Drexler H (1993) Enhanced expression and function of the Na+/Caz+-exchanger in rat left ventricular hypertrophy and in myocardium of neonatal rats. Circulation 88: I - 408

    Google Scholar 

  80. Swynghedauw B (1990) Heart failure: a disease of adaptation. Heart Failure 6: 57–62

    Google Scholar 

  81. Takahashi T, Allen PD, Izumo S (1992) Expression of A-, B-, and C-type natriuretic peptide genes in failing and developing human ventricles: correlation with expresson of the Ca’ -ATPase gene. Circ Res 71: 9–17

    PubMed  CAS  Google Scholar 

  82. Tani M, Neely JR (1990) Na+ accumulation increases Ca++ overload and imparis function in anoxic rat heart. J Mol Cell Cardiol 22: 57–72

    Article  PubMed  CAS  Google Scholar 

  83. Ten Eick RE, Whalley DW, Rasmussen HH (1992) Connections: heart disease, cellular electrophysiology, and ion channels. FASEB J 6: 2568–2580

    CAS  Google Scholar 

  84. Thandroyen PT, Morris AC, Hagler HK, Ziman B, Pai L, Willerson JT, Buja LM (1991) Intracellular calcium transients and arrhythmia in isolated heart cells. Circ Res 69: 810–819

    PubMed  CAS  Google Scholar 

  85. Undrovinas AI, Fleidervish IA, Makielski JC (1992) Inward sodium current at resting potentials in single cardiac myocytes induced by the ischemic metabolite lysophosphatidylcholine. Circ Res 71: 1231–1241

    PubMed  CAS  Google Scholar 

  86. Veenstra RD, Wang HZ, Westphal EM, Beyer EC (1992) Multiple connexins confer distinct regulatory and conductance properties of gap junctions in developing heart. Circ Res 71: 1277–1283

    PubMed  CAS  Google Scholar 

  87. Vetter R, Studer R, Reinecke H, Drexler H, Holtz J (1993) Potnatal expression changes of cardiac sarcolemmal Na+/Ca++ exchanger and sarcoplasmic reticulum Ca++-ATPase are inversely related. J Mol Cell Cardiol 25 (suppl III): 93

    Article  Google Scholar 

  88. Wetzel GT, Chen F, Klitzner TS (1991) L and T type calcium channels in acutely isolated neonatal and adult cardiac myocytes. Pediatr Res 30: 89–94

    PubMed  CAS  Google Scholar 

  89. Wetzel GT, Chen F, Klitzner TS (1993) Ca’ channel kinetics in acutely isolated fetal, neonatal, and adult rabbit cardiac myocytes. Circ Res 72: 1065–1074

    PubMed  CAS  Google Scholar 

  90. Zuanetti G, Hoyt RH, Corr PB (1990) ß-adrenergic-mediated influences on microskopic conduction in epicardial regions overlying infarcted myocardium. Circ Res 67: 284–302

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt

About this chapter

Cite this chapter

Holtz, J., Koban, M. (1994). Calcium homeostasis, myocardial ischemia and arrhythmogenic impact. In: Zehender, M., Meinertz, T., Just, H. (eds) Myocardial Ischemia and Arrhythmia. Steinkopff. https://doi.org/10.1007/978-3-642-72505-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72505-0_1

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-72507-4

  • Online ISBN: 978-3-642-72505-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics