Skip to main content

Pathophysiology of heart failure and the renin-angiotensin-system

  • Chapter
Book cover Angiotensin and the Heart

Summary

For more than a decade, the inhibition of the renin-angiotensin system in heart failure has been regarded as pure vasodilator therapy. Consequently, the role of the renin-angiotensin system has been seen as contributing to hemodynamic overload by vascoconstriction and volume retention. Meanwhile, clinical experience was indicated that important additional aspects of ACE-inhibition in heart failure are attenuation of the enhanced neuroendocrine activity and reversal or prevention of inappropriate trophic reactions of the overloaded myocardium. In overloaded hearts there is enhanced intracardiac formation of angiotensin due to enhanced expression of angiotensinogen and ACE, and due to accumulation of circulating, nephrogenic active renin. In human hearts, a mast-cell-derived chymase, which is not blocked by ACE-inhibition, contributes to intracardiac angiotensin formation. The enhanced intracardiac angiotensin-II formation in overloaded hearts is involved in coronary constriction, impairment of diastolic relaxation, myocyte enlargement and interstitial fibrosis, which aggravate the diastolic impairment. The major problem in overloaded, hypertrophied cardiocytes is the dedifferentiation with instabilization of Ca++-homeostasis due to an altered program of gene expression. Dedifferentiated cardiocytes have a reduced expression of sarcoplasmic reticulum Ca++-ATPase and an enhanced expression of the sarcolemmal Na+/Ca++-exchanger, resulting in an attenuation of active diastole (Ca++-reaccumulation into the sarcoplasmic reticulum), a depressed force-frequency relation, and an enhanced susceptibility for fatal arrhythmias. Furthermore, an enhanced local renin-angiotensin system in distensible coronary and systemic arteries seems to contribute to a reduced releasability of endothelium-derived relaxing factor, probably by reducing bradykinin availability. This modulation of endothelial function appears to contribute to the localization and progression of atheroma development in presence of risks factors for atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aceto JF, Baker KM (1990) [Sar1]angiotensin II receptor-mediated stimulation of protein synthesis in chick heart cells. Am J Physiol 258: H806–H813

    Google Scholar 

  2. Admiraal PJJ, Derkx FHM, Danser AHJ, Pieterman H, Schalekamp MADH (1990) Metabolism and production of angiotensin I in different vascular beds in subjects with hypertension. Hypertension 15: 44–55

    PubMed  CAS  Google Scholar 

  3. Admiraal PJJ, Derkx FHM, Danser AHJ, Pieterman H, Schalekamp MADH (1990) Intrarenal de novo production of angiotensin I in subjects with renal artery stenosis. Hypertension 16: 555–563

    PubMed  CAS  Google Scholar 

  4. Alderman MH, Madhavan S, Ooi WL, Cohen H, Sealey JE, Laragh JH (1991) Association of the renin-sodium profile with the risk of myocardial infarction in patients with hxpertension. N Engl J Med 324: 1098–1104

    Article  PubMed  CAS  Google Scholar 

  5. Allgeier J, Goetz RM, Studer R, Reinecke H, Holtz J (1992) Involvement of bradykinin in the cardioreparation be chronic quinapril in rats with hypertensive left ventricular hypertrophy ( Abstr ). Circulation 86: 1–329

    Google Scholar 

  6. Baker KM, Aceto JF (1990) Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol 259: H610–H618

    PubMed  CAS  Google Scholar 

  7. Baker KM, Booz GW, Dostal DE (1992) Cardiac actions of angiotensin II: Role of an intracardiac renin-angiotensin system. Annu Rev Physiol 54: 227–241

    Google Scholar 

  8. Baker KM, Chernin MI, Wixson SK, Aceto JF (1990) Renin-angiotensin system involvement in pressure-overload cardiac hypertrophy in rats. Am J Physiol 259: 324–332

    Google Scholar 

  9. Bath PM, Hassall DG, Gladwin AM, Palmer RM, Martin JF (1991) Nitric oxide and prostacyclin: divergence of inhibitory effects on myocyte chemotaxis and adhesion to endothelium in vitro. Arterioscl Thromb 11: 254–260

    Article  PubMed  CAS  Google Scholar 

  10. Becker RHA, Wiemer G, Linz W (1991) Preservation of endothelial function by ramipril in rabbits on a long-term atherogenic diet. J Cardiovasc Pharmacol 18 (suppl 2): 110–115

    Google Scholar 

  11. Cambien F, Poirier O, Lecerf L, Evans A, Cambon JP, Arveiler D, Lut G, Bard JM, Bara L, Ricard F, Piret L, Amouyel P, Ahlenc-Gelas F, Soubrier F (1992) Deletion polymorphism in the gene for angiotensin converting enzyme is a potent risk factor for myocardial infarction. Nature 359: 641–644

    Article  PubMed  CAS  Google Scholar 

  12. Campbell DJ (1985) The site of angiotensin production. J Hypertension 3: 199–207

    Article  CAS  Google Scholar 

  13. Campbell DJ (1987) Circulating and tissue angiotensin system. J Clin Invest 79: 1–6

    Article  PubMed  CAS  Google Scholar 

  14. Chien KR, Knowlton KU, Zhu H, Chien S (1991) Regulation of cardiac gene expression during myocardial growth and hypertrophy. Molecular studies of an adaptive physiologic response ( Review ), FASEB J 5: 3037–3046

    Google Scholar 

  15. Chilian WM, Marcus ML (1987) Coronary vascular adaptations to myocardial hypertrophy Ann Rev Physiol 49: 477–487

    CAS  Google Scholar 

  16. Chobanian AV, Haudenschild CC, Nickerson C, Drago R (1990) Antiatherogenic effect of Captopril in the Watanabe heritable hyperlipidemic rabbit. Hypertension 15: 327–331

    PubMed  CAS  Google Scholar 

  17. Cohn JN (1992) The prevention of heart failure: a new agenda. N Engl J Med 327: 725–727

    Article  PubMed  CAS  Google Scholar 

  18. Cohn JN, Johnson G, Ziesche S, Cobb F, Francis G, Tristani F, Smith R, Duncman WB, Loeb H, Wong WZ, Bhat G, Goldman S, Fletcher RD, Doherty J, Hughes CV, Carson P, Cintron G, Shabetai R, Haakenson C (1991) A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med 325: 293–302

    Article  Google Scholar 

  19. Consensus trial study group (1987) Effects of enalpril on mortality in severe congestive heart failure: results of the Cooperative North Scandinavian Enalapril Survival Study (Consensus). N Engl J Med 316: 1429–1435

    Google Scholar 

  20. Crozier IG, Theo R, Kay R, Nicholls G (1989) Sympathetic nervous system during converting enzyme inhibition. Am J Med 87 (suppl 6b): 29s–32s

    PubMed  CAS  Google Scholar 

  21. Cruickshank JM, Lewis J, Moore V, Dodd C (1992) Reversibility of left ventricular hypertrophy by differing types of antihypertensive therapy. J Human Hypert 6: 85–90

    CAS  Google Scholar 

  22. De La Bastie D, Levitski D, Rappaport L, Mecardier JJ, Marotte F, Wisnewsky C, Brovkovich V, Schwartz K, Lompré AM (1990) Function of the sarcoplasmic reticulum and expression of its Ca2+-ATPase gene in pressure overload-induced cardiac hypertrophy in the rat. Circ Res 66: 554–564

    PubMed  Google Scholar 

  23. Dillman WH, Rohrer D, Popovich B, Barrieux A (1987) Altered thyreoid function and the heart. Horm Metab Res (suppl) 17: 26–29

    Google Scholar 

  24. Dzau VJ (1989) Multiple pathways of angiotensin production in the blood vessel wall: evidence, possibilities and hypotheses. J Hypertension 7: 933–936

    Article  CAS  Google Scholar 

  25. Dzau VJ, Ellison KE, Brody T, Ingelfinger J, Pratt R (1987) A comparative study of the distribution of renin and antiogensinogen messenger ribonucleic acids in rat and mouse tissues. Endocrinology 120: 2334–2338

    Article  PubMed  CAS  Google Scholar 

  26. Eberli FR, Apstein CS, Ngoy S, Lorell BH (1992) Exacerbation of left ventricular ischemic diastolic dysfunction by pressure-overload hypertrophy. Modification by specific inhibition of cardiac angiotensin converting enzyme. Circ Res 70: 931–943

    Google Scholar 

  27. Ehlers MRW, Riordan JF (1989) Angiotensin converting enzyme: new perspectives concerning its biological role. Biochemistry 28: 5311–5318

    Article  PubMed  CAS  Google Scholar 

  28. El Amrani AIK (1991) Dual effect of angiotensin II and load on intrinsic myocardial con-tractility. Heart Failure 7: 97–103

    Google Scholar 

  29. Fabris B, Jackson B, Kohzuki M, Perich R, Johnston CI (1990) Increased cardiac angiotensin-converting enzyme in rats with chronic heart failure. Circ Res 59: 475–482

    Google Scholar 

  30. Finckh M, Hellmann W, Ganten D, Furtwängler A, Allgeier J, Boltz M, Holtz J (1991) Enhanced cardiac angiotensinogen gene expression and angiotensin converting enzyme activity in tachypacing-induced heart failure in rats. Basic Res Cardiol 86: 303–316

    Article  PubMed  CAS  Google Scholar 

  31. Fort S, Shah AM, Lewis MJ (1992) Endothelium-derived relaxing factor (EDRF) can modulate cardiac contraction in the intact heart ( Abstr ). Eur Heart J 13: 324s

    Google Scholar 

  32. Foult JM, Tavolaro O, Antony I, Nitenberg A (1988) Direct myocardial and coronary effects of enalaprilat in patients with dilated cardiomyopathy: assessment by a bilateral intracoronary infusion technique. Circulation 77: 337–344

    Article  PubMed  CAS  Google Scholar 

  33. Fozzard HA (1992) Afterdepolarizations and triggered activity. In: Holtz J, Drexler H (eds) Cardiac adaption in heart failure: risks due to myocardial phenotype changes. Steinkopff, Darmstadt pp 105–113

    Google Scholar 

  34. Friedrich SP, Lorell BH, Douglas PS, Gordon S, Grossman W, Benedict C, Hess OM, Krayenbuehl HP, Eberli F, Rousseau MF, Pouleur H (1992) Intracardiac ACE-inhibition improves diastolic distensibility in patients with left ventricular hypertrophy due to aortic stenosis ( Abstr ). Circulation 86: 1–119

    Google Scholar 

  35. Furberg CD, Yusuf S (1985) Effect of vasodilators on survival in chronic congestive heart failure. Am J Cardiol 55: 1110–1111

    Article  PubMed  CAS  Google Scholar 

  36. Goetz RM, Krivokuca M, Holtz J (1992) Local activity of angiotensin converting enzyme and local endothelium-dependent dilatory reactivity in coarctation hypertension ( Abstr ). Circulation 86: 1–558

    Google Scholar 

  37. Hasenfuss G, Mulieri LA, Leavitt BJ, Allen PD, Haeberle JR, Alpert NR (1992) Alteration of contractile function and excitation-contraction coupling in dilated cardiomyopathy. 70: 1225–1232

    CAS  Google Scholar 

  38. Hirsch AT, Talsness CE, Schunkert H, Paul M, Dzau VJ (1991) Tissue-specific activation of cardiac angiotensin converting enzyme in experimental heart Mure. Circ Res 69: 475–482

    PubMed  CAS  Google Scholar 

  39. Holtz J (1992) Bedeutung der Myokard-Hypertrophie bei Herzinsuffizienz. Z Kardiol 81 (suppl 4): 41–48

    PubMed  Google Scholar 

  40. Holtz J, Studer R, Reinecke H, Just H, Drexler H (1992) Modulation of myocardial sarcoplasmic reticulum Ca++-ATPase in cardiac hypertrophy by angiotensin converting enzyme? In: Holtz J, Drexler H, Just H (eds) Cardiac adaptation in heart failure: risks due to myocardial phenotype changes, Steinkopff, Darmstadt pp 191–204

    Google Scholar 

  41. Ikenouchi H, Bridge JHB, Lorell BH, Zhao L, Barry WH (1992) Effects of angiotensin II on [Ca2+]i, motion, Ca2+-current, and pHi in adult rabbit ventricular myocytes ( Abstr ). Circulation 86: 1–218

    Google Scholar 

  42. Ikram H (1989) Haemodynamic effects of ACE-inhibition in heart Mure. ACE Report 63: 1–7

    Google Scholar 

  43. Jenne DE, Tschopp J (1991) Angiotensin D-forming heart chymase is a mast-cell specific enzyme. Biochem J 276: 567–568

    PubMed  CAS  Google Scholar 

  44. Katz AM (1990) Cardiomyopathy of overload: a major determinant of prognosis in congestive heart failure. N Engl J Med 322: 100–110

    Article  PubMed  CAS  Google Scholar 

  45. Kinoshita A, Uratah H, Bumpus FM, Husain A (1991) Multiple determinants for the high substrate specificity of an angiotensin II-forming chymase from the human heart. J Biol Chem 266: 19192–19197

    PubMed  CAS  Google Scholar 

  46. Kleber AG (1992) The potential role of Ca2+ for electrical cell uncoupling and conduction block in myocardial tissue. In: Holtz J, Drexler H (eds) Cardiac adaption in heart failure: risks due to myocardial phenotype changes. Steinkopff, Darmstadt pp 131–143

    Google Scholar 

  47. Komuro I, Kurabayashi M, Shibazaki Y, Takaku F, Yazaki Y (1989) Molecular cloning and characterization of the Ca2+ + Mg2+-dependent adenosine triphosphatase from rat cardiac sarcoplasmic reticulum. J Clin Invest 83: 1102–1108

    Article  PubMed  CAS  Google Scholar 

  48. Ladenson PW, Sherman SI, Baughman KL, Ray PE, Feldman AM (1992) Reversible alterations in myocardial gene expression in a young man with dilated cardiomyopathy and hypothyroidism. Proc Natl Acad Sci 89: 5251–5255

    Article  PubMed  CAS  Google Scholar 

  49. Lakatta EG (1989) Chaotic behaviour of myocardial cells: possible implications regard¬ing the pathophysiology of heart failure. Perspect Biol Med 32: 421–433

    PubMed  CAS  Google Scholar 

  50. Laragh JH (1989) Nephron heterogeneity: clue to the pathogenesis of essential hypertension and effectiveness of angiotensin-converting enzyme inhibitor treatment. Am J Med 87 (suppl 6B)2s–14s

    Google Scholar 

  51. Laragh JH, Baer L, Brunner HR, Buhler FR, Sealey JE, Vaugham ED (1972) Renin, angiotensin and aldosteron system in pathogenesis and management of hypertensive vascular disease. Am J Med 52: 633–652

    Article  PubMed  CAS  Google Scholar 

  52. Lee WH, Packer M (1986) Prognostic importance of serum sodium concentration and its modification by converting enzyme inhibition in patients with severe chronic heart failure. Circulation 73: 257–267

    Article  PubMed  CAS  Google Scholar 

  53. Lindpainter K, Ganten D (1991) The cardiac renin-angiotensin system. An appraisal of present experimental and clinical evidence. Circ Res 68: 905–921

    Google Scholar 

  54. Lindpainter K, Lu W, Niedermaier N, Schieffer B, Just H, Ganten D, Drexler H (1993) Selective activation of cardiac angiotensinogen gene expression in post-infarction ventricular remodeling in the rat. J Moll Cell Cardiol (in press)

    Google Scholar 

  55. Linz W, Scholkens BA (1991) Bradykinin receptor antagonist abolishes the antihypertrophic effect of ramipril. In: The role of bradykinin in the cardiovascular action of ramipril, Eds: Bonner G, Scholkens BA, Scicli AG; Media medica, Wiessbaden; pp 85–89

    Google Scholar 

  56. Lopez JJ, Tang SS, Diamant D, Ingelfinger JR, Weinberg EO, Schunkert H, Lorell BH (1992) Distribution and function of angiotensin AT1 and AT2 receptor subtypes in hypertrophied rat hearts (Abstr). Circulation 86: I–838

    Google Scholar 

  57. Lorell BH, Wexler LF, Momomura S, Weinberg EO, Apstein CS (1986) The influence of pressure overload left ventricular hypertrophy on diastolic properties during hypoxia in isovolumically contracting rat hearts. Circ Res 58: 653–663

    PubMed  CAS  Google Scholar 

  58. Lorell BH (1993) Diastolic dysfunction in pressure-overload hypertrophy and its modification by angiotensin II: current concepts. In: Holtz J, Drexler H, Just H (eds) Cardiac adaptation in heart failure: risks due to myocardial phenotype changes, Steinkopff, Darmstadt pp 163–172

    Google Scholar 

  59. Mercadier JJ, Lompre AM, Due P, Boheler KR, Fraysse JB, Wisnewsky C, Allen P, Komajda M, Schwartz K (1990) Altered sarcoplasmic reticulum Ca2+-ATPase gene expression in the human ventricle during end stage heart failure. J Clin Invest 85: 305–309

    Article  PubMed  CAS  Google Scholar 

  60. Meulemans AL, Andries LJ, Brutsaert DL (1990) Does endocardial endothelium mediate positive inotropic responses to angiotensin I and angiotensin II? Circ Res 66: 1591–1601

    PubMed  CAS  Google Scholar 

  61. Miller VM (1990) Does antihypertensive therapy improve the function of the vascular endothelium? Hypertension 16: 541–543

    PubMed  CAS  Google Scholar 

  62. Moncada S (1993) The L-arginine: nitric oxide pathway. J Cardiovasc Pharmacol (suppl 3 ): 1–9

    Google Scholar 

  63. Mulieri LA, Hasenfuss G, Leavitt B, Allen P, Alpert NR (1992) Altered myocardial force-frequency relation in human heart failure. Circulation 85: 1743–1750

    PubMed  CAS  Google Scholar 

  64. Nadal-Ginard B, Mahdavi V (1990) Molecular basis of cardiac performance. J Clin Invest 84: 1693–1700

    Article  Google Scholar 

  65. Nagai R, Zarain-Herzberg A, Brandl CJ, Fuji J, Tada M, MacLennan DH, Alpert NR, Periasamy M (1989) Regulation of myocardial Ca2+-ATPase and phospholamban mRNA expression in response to pressure overload and thyroid hormone. Proc Natl Acad Sci USA 86: 2966–2970

    Article  PubMed  CAS  Google Scholar 

  66. Nagano M, Higaki J, Nakamura F, Higashimori K, Nagano N, Mikami H, Ogihara T (1992) Role of cardiac angiotension II in isoproterenol-induced left ventricular hypertrophy. Hypertension 19: 708–712

    PubMed  CAS  Google Scholar 

  67. Nordin C (1989) Abnormal Ca2+ handling and the generation of ventricular arrhythmias in congestive heart failure. Heart Failure 5: 143–154

    Google Scholar 

  68. Packer M (1987) Comment. N Engl J Med 316: 1471–1472

    Article  CAS  Google Scholar 

  69. Packer M, Lee WH, Kessler PD, Gotlieb SS, Bernstein JL, Kukin ML (1987) Role of neurohormonal mechanisms in determining survival in patients with severe chronic heart failure. Circulation 75 (suppl IV): 80–92

    Google Scholar 

  70. Paulus WJ, Sys SU, Nellens P, Heyndrickx, Andries E (1988) Failure of inactivation of hypertrophied myocardium: a cause of impaired left ventricular filling in hypertrophic cardiomyopathy and aortic stenosis. In: Grossman W, Lorell BH (eds) Diastolic relaxation of the heart, Nijhoff, Boston, pp 291–304

    Google Scholar 

  71. Perondi R, Saine A, Tio RA, Pomidossi G, Gregorini L, Alessio P, Morganti A, Zanchetti A, Mancia G (1992) ACE-inhibition attenuates sympathetic coronary vasoconstriction in patients with coronary artery disease. Circulation 85: 2004–2013

    PubMed  CAS  Google Scholar 

  72. Pfeffer JM, Pfeffer MA, Mirsky I, Braunwald E (1982) Regression of left ventricular hypertrophy and prevention of left ventricular dysfunction by captopril in the spontaneously hypertensive rat. Proc Natl Acad Sci 79: 3310–3314

    Article  PubMed  CAS  Google Scholar 

  73. Pfeffer MA, Braunwald E, Moye LA, Basta L, Brown EJ, Cuddy TE, Davis BR, Geltman EM, Goldman S, Flaker GC, Klein M, Lamas GA, Packer M, Rouleau J, Rouleau JL, Rutherford J, Wertheimer JH, Hawkins CM (1992) Effect of Captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction: Results of the Survival and Ventricular Enlargement Trial. N Engl J Med 327: 669–677

    Google Scholar 

  74. Philipson KD (1992) Cardiac sodium-calcium exchange research. Trends Cardiovasc Med 2: 12–14

    Article  PubMed  CAS  Google Scholar 

  75. Reinecke H, Studer R, Goetz RM, Drexler H, Just H, Holtz J (1992) Die Genexpression der SR-Ca++-ATPase und des Connexin-43 bei kompensierter linksventrikulärer Hypertrophie (LVH) ist nur vorübergehend vermindert. Z Kardiol 81 (suppl 1): 120

    Google Scholar 

  76. Reinecke H, Bilger J, Hollmann A, Holtz J, Just H, Müller B, Philipson KD, Studer R, Drexler H (1992) Veränderung der Genexpression von SR-Ca2+-ATPase und Na+/Ca2+-Exchanger im Restmyokard nach Infarkt bei der Ratte. Z Kardiol 81 (suppl 1): 113

    Google Scholar 

  77. Reinecke H, Studer R, Philipson KD, Bilger J, Eschenhagen T, Böhm M, Just H, Holtz J, Drexler H (1992) Myocardial gene expression of Na+/Ca++-exchanger and sarcoplasmic reticulum Ca++-ATPase in human heart failure (Abstr). Circulation 86: I–860

    Google Scholar 

  78. a. Schray-Utz B, Zeiher A, Busse R (1993) The expression of monocyte chemo-attractant protein (MCP-1) mRNA in human endothelial cells is modulated by nitric oxide (Abstr). FASEB J (in press)

    Google Scholar 

  79. Schunkert H, Dzau VJ, Tang SS, Hirsch AT, Apstein CS, Lorell BH (1990) Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. J Clin Invest 86: 1913–1920

    Article  PubMed  CAS  Google Scholar 

  80. Schwartz K, Mercadier JJ, Swynghedauw B, Lompre AM (1988) Modifications of gene expression in cardiac hypertrophy. Heart Failure 4: 154–163

    Google Scholar 

  81. Sealey JE, Blumenfeld JD, Bell GM, Pecker MS, Sommers SC, Laragh JH (1988) On the renal basis for essential hypertension: nephron heterogeneity with discordant renin secretion and sodium excretion causing a hypertensive vasoconstriction-volume relationship. J Hypert 6: 763–777

    Article  CAS  Google Scholar 

  82. Sen S, Tarazi RC, Khairallah PA, Bumpus FM (1974) Cardiac hypertrophy in spontaneously hypertensive rats. Circ Res 35: 775–781

    PubMed  CAS  Google Scholar 

  83. Shah AM, Evans HG, Lewis MJ (1992) The characteristic effect of emdothelium- derived relaxing factor (EDRF) on myocardial contraction is mimicked by interleukin-lβ (Abstr). Circulation 86: I–82

    Google Scholar 

  84. Simpson PC (1990) Regulation of hypertrophy and gene transcription in cultured heart muscle cells. In: Roberts R, Schneider MD ( 1990 ) Molecular biology of the cardiovascular system. Alan R Liss Inc 125–133

    Google Scholar 

  85. SOLVD Investigators (1991) Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 325: 293–302

    Google Scholar 

  86. SOLVD Investigators (1992) Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 327: 685–691

    Google Scholar 

  87. Strauer BE (1987) Structural and functional adaption of the chronically overloaded heart in arterial hypertension. Am Heart J 114: 948–957

    Article  PubMed  CAS  Google Scholar 

  88. Studer R, Müller B, Reinecke H, Just H, Holtz J, Drexler H (1992) Quantified RNA-polymerase chain reaction demonstrates augmented gene expression of angiotensin converting enzyme in ventricles of patients with heart failure ( Abstr ). Circulation 86: 1–119

    Google Scholar 

  89. Swynghedauw B (1990) Heart failure: a disease of adaptation. Heart Failure 6: 57–62

    Google Scholar 

  90. Takahashi T, Allen PD, Izumo S (1992) Expression of A-, B-, and C-type natriuretic peptide genes in failing and developing human ventricles: correlation with expression of the Ca++-ATPase gene. Circ Res 71: 9–17

    PubMed  CAS  Google Scholar 

  91. Ten Eick RE, Whalley DW, Rasmussen HH (1992) Connections: heart disease, cellular electrphysiology, and ion channels. FASEB J 6: 2568–2580

    PubMed  CAS  Google Scholar 

  92. Urata H, Kinoshita A, Misono KS, Bumpus FM, Husain A (1990) Identification of a highly specific chymase as the major angiotensin H-forming enzyme in the human heart. J Biol Chem 265: 22348–22357

    PubMed  CAS  Google Scholar 

  93. Urata H, Kinoshita A, Perez DM, Misono KS, Bumpus FM, Graham RM, Husain A (1991) Cloning of the gene and cDNA for human heart chymase. J Biol Chem 266: 17173–17179

    PubMed  CAS  Google Scholar 

  94. Weber KT, Brilla CG (1992) Factors associated with reactive and reparative fibrosis of the myocardium. In: Hasenfuss G, Holubarsch C, Just H, Alpert NR (eds) Cellular and molecular alterations in the failing human heart, Steinkopff, Darmstadt, pp. 291–301

    Chapter  Google Scholar 

  95. Xiang JZ, Linz W, Becker H, Ganten D, Lang RE, Schölkens B, Unger T (1985) Effects of converting enzyme inhibitors: ramipril and enalapril on peptide action and sympathetic neurotransmission in the isolated heart. Eur J Pharmacol 113: 215–223

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt

About this chapter

Cite this chapter

Holtz, J. (1993). Pathophysiology of heart failure and the renin-angiotensin-system. In: Grobecker, H., Heusch, G., Strauer, B.E. (eds) Angiotensin and the Heart. Steinkopff. https://doi.org/10.1007/978-3-642-72497-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72497-8_13

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-0936-8

  • Online ISBN: 978-3-642-72497-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics