Skip to main content

Effect of angiotensin-converting enzyme inhibitors on myocardial ischemia/reperfusion injury: an overview

  • Chapter
Angiotensin and the Heart

Summary

There are multiple mechanisms whereby ACE inhibitors could be beneficial during myocardial ischemia and reperfusion, including: i) reduced formation of angiotensin II ii) decreased metabolism of bradykinin, iii) antioxidant activity, and iv) possibly other unknown mechanisms. Reduced formation of angiotensin II should be beneficial because this peptide exerts several actions that are potentially detrimental to the ischemic/reperfused myocardium, including vasoconstriction, increased release of norepinephrine, stimulation of phospholipase C and/or A2, and increased afterload with an attendant increase in oxygen demands. Reduced metabolism of bradykinin could be beneficial by increasing myocardial glucose uptake, by causing vasodilation, and by stimulating production of endothelium-derived relaxing factor and prostacyclin. Although earlier studies suggested that sulfhydryl-containing ACE inhibitors scavenge superoxide anions, recent data have shown that these drugs scavenge hydroxyl radical and hypochlorous acid with no effect on superoxide anion. Studies in isolated hearts have demonstrated that ACE inhibitors attenuate the metabolic, arrhythmic, and contractile dearangements associated with ischemia and reperfusion, and have suggested that such beneficial effects are mediated by potentiation of bradykinin and/or increased synthesis of prostacyclin. Studies in models of myocardial stunning after brief (15-min) ischemia in vivo (anesthetized dogs) suggest that ACE inhibitors enhance the recovery of contractile function after a single brief ischemic episode. No data are available regarding the effect of these drugs on myocardial stunning after a prolonged, partly reversible episode, after multiple consecutive brief ischemic episodes, and after global ischemia. The mechanism for the salutary effects of ACE inhibitors on stunning remains a mystery. It may involve an antioxidant action (in the case of thiol-containing molecules) or potentiation of prostaglandins (in the case of non-thiol-containing molecules). What is clear is that the enhanced recovery of function effected by these drugs is not due to hemodynamic effects, inhibition of the converting enzyme per se, or an “antiischemic” action (since the drugs were effective when given at the time of reperfusion). The effects of ACE inhibitors on myocardial infarct size remain controversial.

Further studies will be necessary to conclusively establish whether ACE inhibitors can protect against the detrimental effects of myocardial ischemia and reperfusion. Nevertheless, the evidence provided thus far is encouraging and warrants an in-depth assessment of the role of these drugs in attenuating myocardial ischemia/reperfusion injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed SS, Levinson GE, Weisse AB, Regan TJ (1975) The effect of angiotensin on myocardial contractility. J Clin Pharmacol 15: 276–285

    PubMed  CAS  Google Scholar 

  2. Bagchi D, Prasad R, Das DK (1989) Direct scavenging of free radicals by captopril, an angiotensin converting enzyme inhibitor. Bioch Biophys Res Com 158 (1): 52–57

    Article  CAS  Google Scholar 

  3. Baker KM, Companile CP, Trachte GJ, Peach MJ (1984) Identification and characterization of the rabbit angiotensin II myocardial receptor. Circ Res 54: 286–293

    PubMed  CAS  Google Scholar 

  4. Becker BF, Reinholz N, Leipert B, Raschke P, Gerlach E (1991) Are the radical scavenging properties of ace inhibitors with sulfhydryl groups in therapeutically effective concentrations of quantitative significance? Klin Wochenschr 69 (Suppl 24): 6–9

    PubMed  Google Scholar 

  5. Becker LC, Ambrosio G (1987) Myocardial consequences of reperfusion. Prog Car- diovasc Dis 30: 23–44

    Article  CAS  Google Scholar 

  6. Bolli R (1990) Mechanism of myocardial “stunning”. Circulation 82 (3): 723–738

    Article  PubMed  CAS  Google Scholar 

  7. Bolli R (1991) Oxygen-derived free radicals and myocardial reperfusion injury: an overview. Cardiovasc Drugs Ther 5: 249–268

    Article  PubMed  Google Scholar 

  8. Bolli R, Hartley CJ, Rabinovitz RS (1991) Clinical relevance of myocardial “stunning”. Cardiovasc Drugs Ther 5: 877–890

    Article  PubMed  CAS  Google Scholar 

  9. Cecil’s Textbook of Medicine (1992) Wyngaarden JB, Smith LH, Bennett JC (eds) W. B. Saunders Company, pp 1197–1198

    Google Scholar 

  10. Chopra M, McMurray J, Stewart J, Dargie HJ, Smith WE (1990) Free radical scavenging: a potentially beneficial action of thiol-containing angiotensin converting enzyme inhibitors. Biochem Soc Trans 18: 1184–1185

    PubMed  CAS  Google Scholar 

  11. Chopra M, Scott N, McMurray J, McLay J, Bridges A, Smith WE, Belch JJF (1989) Captopril: a free radical scavenger. Br J Clin Pharmacol 27: 396–399

    PubMed  CAS  Google Scholar 

  12. CONSENSUS Trial Study Group (1987) Effects of enalapril on mortality in severe congestive heart failure. N Engl J Med 316: 1429–1435

    Google Scholar 

  13. de Graeff PA, van Gilst WH, Bel K, de Langen CDJ, Kingma JH, Wesseling Η (1987) Concentration-dependent protection by captopril against myocardial damage during ischemia and reperfusion in a closed chest pig model. J Cardiovasc Pharmacol 9 (Suppl 2): S37–S42

    Google Scholar 

  14. Deboben A, Inagami T, Ganten D (1983) Tissue renin. In: Genest J, Kuchel O, Hamet P, Cantin Μ (eds) Hypertension–physiopathology and treatment. New York: McGraw- Hill Book Company:194–209

    Google Scholar 

  15. Dempsey PJ, McCallum ZT, Kent KM, Cooper Τ (1971) Direct myocardial effects of angiotensin Π. Am J Physiol 220: 477–481

    PubMed  CAS  Google Scholar 

  16. DiPasquale P, Barone G, Paterna S, Cannizaro S, Giubilato A (1990) Efficacy of captopril before thrombolysis in acute myocardial infarction: preliminary findings. Drugs Exp Clin Res 16 (11): 581–589

    CAS  Google Scholar 

  17. Dunn FG, Oigman W, Ventura HO, Messerli FH, Kovrin I, Fohlich ED (1984) Enalapril improves systemic and renal hemodynamics and allows regression of left ventricular mass in essential hypertension. Am J Cardiol 53: 105–108

    Article  PubMed  CAS  Google Scholar 

  18. Dusing R, Scherag R, Landsberg G, Glanzer K, Kramer HJ (1983) The converting enzyme inhibitor captopril stimulates prostacyclin synthesis by isolated rat aorta. Eur J Pharmacol 91: 501–504

    Article  PubMed  CAS  Google Scholar 

  19. Elfellah MS, Ogilivie RI (1985) Effect of vasodilator drugs on coronary occlusion and reperfusion arrhythmias in anesthetized dogs. J Cardiovasc Pharmacol 7: 826–832

    Article  PubMed  CAS  Google Scholar 

  20. Engelman RM, Rousou JA, Iyengar J, Das DK (1991) Captopril, an ACE inhibitor, for optimizing reperfusion after acute myocardial infarction. Ann Thorac Surg 52: 918–926

    Article  PubMed  CAS  Google Scholar 

  21. Ertl G, Gaudron P, Kochsiek K (1990) Influence of angiotensin-converting enzyme inhibition on cardiac function in myocardial infarction. Am J Cardiol 65: 70G–73G

    Article  PubMed  CAS  Google Scholar 

  22. Ertl G, Kloner RA, Alexander RW, Braunwald E (1982) Limitation of infarct size by an angiotensin-converting enzyme inhibitor. Circulation 1: 40–48

    Article  Google Scholar 

  23. Farber NE, Gross GJ (1989) Prostaglandin E1 attenuates postischemic contractile dysfunction after brief coronary occlusion and reperfusion. Am Heart J 18: 17

    Article  Google Scholar 

  24. Farber NE, Gross GJ (1990) Prostaglandin redirection by thromboxane synthetase inhibition: attenuation of myocardial stunning in canine heart. Circulation 81: 369

    Article  PubMed  CAS  Google Scholar 

  25. Farber NE, Pieper GM, Thomas JP, Gross GJ (1988) Beneficial effects of iloprost in the stunned canine myocardium. Circ Res 62: 204

    PubMed  CAS  Google Scholar 

  26. Fowler NO, Holmes JC (1964) Coronary and myocardial actions of angiotensin. Circ Res 14: 191–201

    PubMed  CAS  Google Scholar 

  27. Ganten D, Balz W, Hense H, Jung W, Rohde A, Bayer C (1985) Angiotensin (ANG) peptides in tissue of rabbits: characterization and regulation after nephrectomy and converting enzyme inhibitor (CEI) treatment. Naunyn-Schmiedbergs Arch Pharmacol 329 (Suppl): R63

    Article  Google Scholar 

  28. Ganten D, Ludwig G, Hennhoefer C (1986) Genetic control of renin in the tissues of different strains of mice [Abstract]. Nauyn Schmiedebergs Arch Pharmacol 332: R–59

    Google Scholar 

  29. Hashimoto K, Hamamoto H, Honda Y, Hirose M, Furakawa S, Kimura E (1978) Changes in components of kinin system and hemodynamics in acute myocardial infarction. Am Heart J 95: 619–626

    Article  PubMed  CAS  Google Scholar 

  30. Hashimoto K, Hirose M, Furukawa S, Hayakawa H, Kimura E (1977) Changes in hemodynamics and bradykinin concentration in coronary sinus blood in experimental coronary occlusion. Jap Heart J 18: 679–689

    Article  PubMed  CAS  Google Scholar 

  31. Hadyuk K, Boucher R, Genest J (1970) Renin activity and content in various tissues in dogs under different pathophysiological states. Proc Soc Exp Biol Med 134: 252–255

    Google Scholar 

  32. Hock CE, Ribeiro LGT, Lefer AM (1985) Preservation of ischemic myocardium by a new converting enzyme inhibitor, enalaprilic acid, in acute myocardial infarction. Am Heart J 109: 222–228

    Article  PubMed  CAS  Google Scholar 

  33. Jennings RB, Reimer KA (1983) Factors involved in salvaging ischemic myocardium. Effects of reperfusion of arterial blood. Circulation 68 (Suppl): I25–136

    PubMed  CAS  Google Scholar 

  34. Jin M, Wilhelm MJ, Lang RE, Unger T, Lindpainter K, Ganten D (1988) Endogeneous tissue renin-angiotensin systems: from molecular biology to therapy. Am J Med 84 (Suppl 3A): 28–36

    Article  PubMed  CAS  Google Scholar 

  35. Klein J, Colin P, Scherer E, Levy M, Koren G (1990) Simple measurement of captopril in plasma by high-performance liquid chromatography with ultraviolet detection. Ther Drug Monit 12 (1): 105–110

    Article  PubMed  CAS  Google Scholar 

  36. Koch-Weser J (1965) Nature of inotropic action of angiotensin. Circ Res 16: 230–237

    PubMed  CAS  Google Scholar 

  37. Kukreja RC, Kontos HA, Hess ML (1990) Captopril and enalaprilat do not scavenge the superoxide anion. Am J Cardiol 65: 241–271

    Article  Google Scholar 

  38. Lindpainter K, Jin M, Wilhelm MJ, Suzuki F, Linz W, Schoelkens BA, Ganten D (1988) Intracardiac generation of angiotensin and its physiologic role. Circulation 77(Suppl I):I–18–23

    Google Scholar 

  39. Linz W, Martorana PA, Grotsch H, Bei-Yin Q, Scholkens BA (1990) Antagonizing bradykinin obliterates the cardioprotective effects of bradykinin and angiotensin-converting enzyme ( ACE) inhibitors in ischemic hearts. Drugs Dev Res 19: 393–408

    Google Scholar 

  40. Linz W, Martorana PA, Scholkens BA (1990) Local inhibition of bradykinin degradation in ischemic hearts. J Cardiovasc Pharmacol 15 (Suppl 6): 99–109

    Google Scholar 

  41. Linz W, Scholkens BA, Han YF (1986) Beneficial effects of the converting enzyme inhibitor, ramipril, in ischemic rat hearts. J Cardiovasc Pharmacol 8 (Suppl 10): S91–S99

    Article  PubMed  CAS  Google Scholar 

  42. Linz W, Scholkens BA, Manwen J, Wilhelm M, Ganten D (1986) The heart as a target for converting enzyme inhibitors: studies in ischemic isolated working rat hearts. J Hypert 4 (Suppl 6): S477 - S479

    CAS  Google Scholar 

  43. Martorana PA, Linz W, Scholkens BA (1991) Does bradykinin play a role in the cardiac antiischemic effect of ACE inhibitors? Basic Res Cardiol 86: 293–296

    Article  PubMed  CAS  Google Scholar 

  44. Mebazzaa A, Chevalier B, Mercadier JJ, Echter E, Rappaport L, Swynghedauw B (1989) A review of the renin-angiotensin system in the normal heart. J Cardiovasc Pharmacol 14 (Suppl 4): S16–20

    Article  Google Scholar 

  45. Mehta PM, Przyklenk K, Kloner RA (1990) Cardioprotective effects of captopril in myocardial ischaemia, ischaemia/reperfusion and infarction. Eur Heart J ll(Silppl B): 94–99

    Google Scholar 

  46. Misra HP, Fridovich I (1977) Superoxide dismutase: a photochemical augmentation assay. Arch Biochem Biophys 187: 303–307

    Google Scholar 

  47. Myers ML, Bolli R, Lekich RF, Hartley CJ, Roberts R (1986) N-2-mercaptopropionyl-glycine improves recovery of myocardial function after reversible regional ischemia. J Am Coll Cardiol 8: 1161

    Article  PubMed  CAS  Google Scholar 

  48. Nakashima Y, Fouad FM, Tarazi RC (1984) Regression of left ventricular hypertrophy from systemic hypertension by enalapril. Am J Cardiol 53: 1044–1049

    Article  PubMed  CAS  Google Scholar 

  49. Peach MJ (1981) Molecular actions of angiotensin. Biochem Pharmacol 30: 2745–2751

    Article  PubMed  CAS  Google Scholar 

  50. Pfeffer JM, Pfeffer MA (1988) Angiotensin converting enzyme inhibition and ventricular remodeling in heart failure. Am J Med 84 (Suppl 3A): 37–44

    Article  PubMed  CAS  Google Scholar 

  51. Przyklenk K, Kloner RA (1987) Acute effects of hydralazine and enalapril on contractile function of postischemic “stunned” myocardium. Am J Cardiol 60: 934–936

    Article  PubMed  CAS  Google Scholar 

  52. Przyklenk K, Kloner RA (1991) Angiotensin converting enzyme inhibitors improve contractile function of stunned myocardium by different mechanism of action. Am Heart J 121: 1319–1330

    Article  PubMed  CAS  Google Scholar 

  53. Rosen P, Eckel J, Reinauer H (1983) Influence of bradykinin on glucose uptake and metabolism studied in isolated cardiac myocytes and isolated perfused rat hearts. Hoppe Seylers Z Physiol Chem 364: 431–438

    Article  Google Scholar 

  54. Scholkens BA, Linz W (1991) Ace inhibition: mechanisms of cardioprotection in acute myocardial ischemia. Klin Wochenschr 69 (Suppl 24): 1–5

    PubMed  Google Scholar 

  55. Scholkens BA, Linz W, Han Y-F (1987) Heart and vascular wall as targets for tissue converting enzyme inhibition. Clin Exp Hypertens 9 (2–3): 427–433

    Article  CAS  Google Scholar 

  56. Scholkens BA, Linz W, Konig W (1988) Effects of the angiotensin converting enzyme inhibitor, ramipril in isolated rat heart are abolished by a bradykinin antagonist. J Hypertension 6 (Suppl 4): 25–28

    Google Scholar 

  57. Schwartz SL, Williams GH, Hollenberg NK, Levine L, Dluhy RG, Moore FJ (1980) Captopril-induced changes in prostaglandin production. J Clin Invest 65: 1257

    Article  Google Scholar 

  58. Sweet CS (1990) Issues surrounding a local cardiac renin system and the beneficial actions of angiotensin-converting enzyme inhibitors in ischemic myocardium. Am J Cardiol 65: 111–131

    Article  Google Scholar 

  59. The SAVE Trial: Data presented at the 41st Annual Scientific Sessions of the American College of Cardiology — Dallas, April 1992

    Google Scholar 

  60. The SOLVD Investigators (1991) Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 325: 293–302

    Google Scholar 

  61. Urata H, Healy B, Stewart RW, Pumpus FM, Husain A (1989) Angiotensin II receptors in normal and failing human hearts. J Clin Endocrinol Metab 69: 54–66

    Article  PubMed  CAS  Google Scholar 

  62. van Gilst WH, de Graeff PA, Wesseling H, de Langen CDJ (1986) Reduction of reperfusion arrhythmias in the ischemic isolated rat heart by angiotensin converting enzyme inhibitors: a comparsion of captopril, enalapril and HOE 498. J Cardiovasc Pharmacol 8: 722–728

    Google Scholar 

  63. Westlin W, Mullane К (1988) Does captopril attenuate reperfusion-induced myocardial dysfunction by scavenging free radicals? Circulation 77(Suppl 1)I–30–39

    Google Scholar 

  64. Wiemer G, Becker RHA (1991) Die Ramiprilat-stimulierte cGMP und PGI2-Bildung in Endothel-zellen ist Bradykinin-vermittelt. Kardiol 80 (Suppl 3): 120

    Google Scholar 

  65. Wilhelm MJ, Lindpainter K, Jin M, Zimmerman F, Bayer C, Ganten D (1987) The intrinsic cardiac renin-angiotensin system: capability for independent local regulation. Hochdruck 8: 18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt

About this chapter

Cite this chapter

Zughaib, M.E., Sun, JZ., Bolli, R. (1993). Effect of angiotensin-converting enzyme inhibitors on myocardial ischemia/reperfusion injury: an overview. In: Grobecker, H., Heusch, G., Strauer, B.E. (eds) Angiotensin and the Heart. Steinkopff. https://doi.org/10.1007/978-3-642-72497-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72497-8_11

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-0936-8

  • Online ISBN: 978-3-642-72497-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics