Advertisement

Tonminerale in Böden

  • U. Schwertmann
  • E.-A. Niederbudde
Chapter

Zusammenfassung

Die Gesteine werden in weiten Teilen der festen Erde von einer dünnen Haut, der Bodendecke, überzogen. Sie entstand als ein eigenständiger Naturkörper aus der Wechselwirkung von Atmo-, Bio- und Lithosphäre und wird Pedosphäre genannt. Die Pedosphäre ist der Träger der terrestrischen Biosphäre und erfüllt damit die Anforderungen an unsere Versorgung mit lebensnotwendigen Nahrungsmitteln und anderen organischen Stoffen. Als Teil terrestrischer Ökosysteme nimmt sie aktiv am Stoffhaushalt der festen Erde teil. Die Pedosphäre besteht aus einem Mosaik unterschiedlichster Böden. Sie unterscheiden sich erheblich in ihrer Fähigkeit, jenen Anforderungen zu genügen. Eine ihrer intrinsischen Eigenschaften, die hierauf im starkem Maße Einfluß nimmt, ist die Korngrößenverteilung. Daher werden in der Bodenkunde die Böden weltweit und seit altersher nach den Anteilen ihrer Korngrößen Ton (>2 μm), Schluff (2−63 μm) und Sand (63−2000 μm) bezeichnet. Herrscht eine der drei Kornfraktionen vor, so spricht man von Ton-, Schluff- und Sandböden; im Lehmboden sind alle 3 Kornfraktionen in ungefähr gleichen Anteilen vertreten.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Anderson DW, Saggar S, Bettany JR, Stewart JWB (1981) Particle size fractions and their use in studies of soil organic matter: I. The nature and distribution of forms of carbon, nitrogen and sulfur. Soil Sci Soc Am J 45: 767Google Scholar
  2. 2.
    Avery BW, Bullock P (1977) Mineralogy of clay soils in relation to soil classification. Soil Survey technical monograph 10. Harpenden U KGoogle Scholar
  3. 3.
    Becher HH (1991) Über die Aggregatdichte und deren mögliche Auswirkung auf den Boden-lösungstransport. Z Pflanzenern Bodenkd 154: 3Google Scholar
  4. 4.
    Beckett PHT (1964) Studies on soil potassium. II. The “immediate” Q/I relations of labile potassium in the soil. J Soil Sci 15: 9Google Scholar
  5. 5.
    Berndt RD, Coughlan KJ (1976) The nature of changes in bulk density with water content in a cracking clay. Aust J Soil Res 15: 27Google Scholar
  6. 6.
    Bettany JR, Saggar S, Stewart JWB (1980) Comparison of the amounts and forms of sulfur in soil organic matter fractions after 65 years of cultivation. Soil Sci Soc Am J 44: 70Google Scholar
  7. 7.
    Boodt MF de, Hayes MHB, Herbillon A (1990) Soil colloids and their associations in aggregates. NATO ASI Series B, vol 215. Plenum Press, New York, pp 598Google Scholar
  8. 8.
    Breemen N van, Mulder J, Driscoll CT (1983) Acidification and alkalinization of soils. Plant and Soil. 75: 283Google Scholar
  9. 9.
    Brindley GW, Brown G (1980) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society, London, pp 594Google Scholar
  10. 10.
    Burns RG (1986) Interaction of enzymes with soil mineral and organic colloids. In: Huang PM, Schnitzer M (eds) Interactions of soil minerals with natural organics and microbes. SSSA Spec. Publ. Number 17, Madison, WI, pp 429–451Google Scholar
  11. 11.
    Chichester FW (1970) Total and N15-labelled nitrogen of soil organo-mineral sedimentation fractions. Plant and Soil 33: 437Google Scholar
  12. 12.
    Chien SH (1978) Reactions of phosphate rocks, rhenania phosphate, and superphosphate with an acid soil. Soil Sci Soc Am J 42: 705Google Scholar
  13. 13.
    Churchman GJ (1980) Clay minerals formed from micas and chlorites in some New Zealand soils. Clay Miner 15: 59Google Scholar
  14. 14.
    Clapp CE, Harrison R, Hayes MHB (1991) Interactions between organic macromolecules and soil inorganic colloids and soils. In: Bolt GH, Boodt de MF, Hayes MHB, McBride MB (eds) Interactions at the soil colloid - soil solution interface. NATO ASI Series, vol E190. Kluwer, the Netherlands, pp 409–468Google Scholar
  15. 15.
    Davis JA, Kent DB (1990) Surface complexation modeling in aqueous geochemistry. In: Hochella MF Jr, White AF (eds) Mineral-water interface geochemistry. Miner Soc Am Reviews in Mineralogy 23: 177Google Scholar
  16. 16.
    Dexter AR, Chan KY (1991) Soil mechanical properties as influenced by exchangeable cations. J Soil Sci 42: 219Google Scholar
  17. 17.
    Dhillon SK, Dhillon KS (1990) Kinetics of release of nonexchangeable potassium by cation-saturated resins from Red ( Alfisols ), Black (Vertisols) and Alluvial (Inceptisols) soils of India. Geoderma 47: 283Google Scholar
  18. 18.
    Dixon JB, Weed SB (1989) Minerals in soil environments. Soil Sci Soc Am Book Series Nr 1, Madison, WI, USA, p 1244Google Scholar
  19. 19.
    Domaar JF (1984) Monosaccharides in hydrolysates of waterstable aggregates after 67 years of cropping to spring wheat as determined by capillary gas chromatography. Can J Soil Sci 64: 647Google Scholar
  20. 20.
    Dubach P, Zweifel G, Bach R, Deûel H (1955) Untersuchungen an der Fulvosäure-Fraktion einiger schweizerischer Böden. Z Pflanzenern Düng Bodenkd 69: 97Google Scholar
  21. 21.
    Eswaran H, Ikawa H, Kimble JM (1986) Oxisols of the world. Proc Int Symp Red Soils, Beijing, China. Elsevier, Amsterdam, pp 90–123Google Scholar
  22. 22.
    Fanning DS, Vissarion Z, Keramidas Z, El-Desoky MA (1989) Micas. In: Dixon JB, Weed SB (eds) Minerals in soil environments. SSSA Book Series Nr 1, Madison, WI, pp 551–634Google Scholar
  23. 23.
    Filip Z (1975) Wechselbeziehungen zwischen Mikroorganismen und Tonmineralen und ihre Auswirkung auf die Bodendynamik. Habilitationsschrift, Universität GießenGoogle Scholar
  24. 24.
    Fischer WR, Pfanneberg T, Niederbudde EA, Medina R (1981) Transformation of 15N-la-belled ammonium in two soils differing in NH4-fixing capacity. J Soil Sci 32: 409Google Scholar
  25. 25.
    Fox RL, Xue-Yuan L (1986) Phosphate fertilizer requirements of weathered soils and residual phosphate fertilizer efficiency as indicated by phosphate sorption curves. Proc Int Symp Red Soils. Elsevier, Amsterdam, pp 468–478Google Scholar
  26. 26.
    Freeney JR, Miller RJ (1970) Investigation of the clay mineral protection theory for non-hydrolysable nitrogen in soil. J Sci Fd Agric 21: 57Google Scholar
  27. 27.
    Gebhardt H, Meyer B, Scheffer F (1966) Zwischenschichtbelegung und Expansions verhalten von Dreischicht-Tonmineralen im CaC03-gepufferten Hydrogencarbonatmilieu kalkreicher Lockersedimentböden (Beispiel Löß). Z Pflanzenern Düng Bodenkd 114: 90Google Scholar
  28. 28.
    Gjems O (1967) Studies on clay minerals and clay-mineral formation in soil profiles in Scandinavia. Norw Forest Res Inst, Vollebekk, Norway, pp 415Google Scholar
  29. 29.
    Goldberg S, Forster HS (1990) Flocculation of reference clays and arid-zone clays. Soil Sci Soc Am J 54: 714Google Scholar
  30. 30.
    Goulding KWT, Loveland PJ (1986) The classification and mapping of potassium reserves in soils of England and Wales. J Soil Sci 37: 555Google Scholar
  31. 31.
    Graham RC, Southard AR (1983) Genesis of a vertisol and an associated mollisol in Northern Utah. Soil Sci Soc Am J 47: 552Google Scholar
  32. 32.
    Gruner JW (1939) Ammonium mica synthesized from vermiculite. Am Miner 24: 428Google Scholar
  33. 33.
    Guckert A, Breisch H, Reisinger O (1975) Interface sol-racine I. Etude au microscope electronique des relations mucigel-argile-microorganismes. Soil Biol. Biochem. 1: 214Google Scholar
  34. 34.
    Guckert A, Tok HH, Jacquin F (1977) Biodégradation de polysaccharides bacteriens adsorbés sur une montmorillonite. Symp Soil Sci Organic matter studies, Proc Braunschw 1: 403Google Scholar
  35. 35.
    Haan FAM de, Bolt GH, Pieters BGM (1965) Diffusion of potassium-40 into an illite during prolonged shaking. Proc Soil Sci Soc Am 29: 528Google Scholar
  36. 36.
    Haider K, Filip Z, Martin JP (1970) Einfluß von Montmorillonit auf die Bildung von Biomasse und Stoffwechselzwischenprodukten durch einige Mikroorganismen. Arch Mikrobiol 73: 201Google Scholar
  37. 37.
    Hartge KH, Horn R (1991) Einführung in die Bodenphysik, 2. Aufl. Enke, StuttgartGoogle Scholar
  38. 38.
    Hayes MHB, Himes FL (1986) Nature and properties of humus-mineral complexes. In: Huang PM, Schnitzer M (eds) Interactions of soil minerals with natural organics and microbes. Soil Sci Soc Am Publ Nr 17, pp 103–158Google Scholar
  39. 39.
    Hildebrand EE (1987) Zustand und Entwicklung chemischer Eigenschaften von Mineralböden aus Standorten mit erkrankten Waldbeständen. Forschungsbericht. Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg, 41 SGoogle Scholar
  40. 40.
    Howard SA, Preston KD (1989) Profile fitting of powder diffraction patterns. In: Bish DL, Post JE (eds) Modern powder diffraction. Min Soc Amer, Washington, DC, pp 217–276Google Scholar
  41. 41.
    Hower J, Mowatt TC (1966) The mineralogy of illites and mixedlayer illite/montmorillonites. Am Mineralogist 51: 825Google Scholar
  42. 42.
    Huang PM, Lee S Y (1969) Effect of drainage on weathering transformations of mineral colloids of some Canadain prairie soils. Proc Int Clay Conf 1: 541Google Scholar
  43. 43.
    Iwata S, Yamamoto K, Sato T (1990) Amorphous inorganic material contents and changes in plasticity indexes by airdrying. Soil Sci Soc Am J 54: 558Google Scholar
  44. 44.
    Jackson ML, Tyler SA, Willis AL, Bourbeau GA, Pennington RP (1948) Weathering sequence of clay-size minerals in soils and sediments. I. Fundamental generalizations. J Phys Coll Chem 52: 1237Google Scholar
  45. 45.
    Jackson ML, Hseung Y, Corey RB, Evans EJ, van der Heuvel RC (1952) Weathering sequence of clay-size minerals in soils and sediment: II. Chemical weathering of layer silicates. Soil Sci Soc Am Proc 16: 3Google Scholar
  46. 46.
    Janik LM, Raupach M (1977) An iterative, least-squares program to separate infrared absorption spectra into their component bands. CSIRO Div of Soil Tech. Paper 35: 1Google Scholar
  47. 47.
    Johns WD, Grim RE, Bradley WF (1954) Quantitative estimations of clay minerals by diffraction methods. J Sed Petro 24: 242Google Scholar
  48. 48.
    Jones RC (1989) A computer technique for X-ray diffraction curve fitting/peak decomposition. In: Pevear DR, Mumpton FA (eds) Quantitative mineral analysis of clays. The clay minerals Society, Evergreen, Colorado, 1: 52Google Scholar
  49. 49.
    Kämpf N, Schwertmann U (1985) Properties of goethite and hematite in kaolinitic soils of southern and central Brazil. Soil Sci 139: 344Google Scholar
  50. 50.
    Kantor W (1971) Mineralogische und chemische Eigenschaften von Katenen tropischer Böden in Kenia und ihr pedogenetisch bedingter Nährstoffhaushalt. Müller, Berlin, 117 SGoogle Scholar
  51. 51.
    Karathanasis AD, Evangelou VP (1986) Water sorption characteristics of aluminum- and calcium-saturated soil clays. Soil Sci Soc Am J 50: 1063Google Scholar
  52. 52.
    Karathanasis AD, Hajek BF (1982) Quantitative evaluation of water and adsorption on soil clays. Soil Sci Am J 46: 1321Google Scholar
  53. 53.
    Kittrick JA (ed) (1985) Mineral classification of soils. Soil Sci Soc Am Spec Publ Nr 16, pp 178Google Scholar
  54. 54.
    Knauss KG, Wolery TJ (1989) Muscovite dissolution kinetics as a function of pH and time at 70 °C. Geochim Cosmochim Acta 53: 1493Google Scholar
  55. 55.
    Kodama H (1979) Clay minerals in Canadian soils: Their origin, distribution, and alteration. Can J Soil Sci 59: 37Google Scholar
  56. 56.
    Kolterman DW, Truog E (1953) Determination of fixed soil potassium. Soil Sci Soc Am Proc 17: 347Google Scholar
  57. 57.
    Kowalenko CG, Cameron DR (1978) Nitrogen transformations in soil plant systems in three years of field experiments using tracer and non-tracer methods of an ammonium-fixing soil. Can J Soil Sci 58: 195Google Scholar
  58. 58.
    Kowalenko CG, Ross G J (1980) Studies in the dynamics of “recently” clay fixed NH4 using 15N. Can J Soil Sci 60: 61Google Scholar
  59. 59.
    Ladd JN, Oades JM, Amato M (1981) Microbial biomass formed from 14C, 15N-labelled plant material decomposing in soils in the field. Soil Biol Biochem 13: 119Google Scholar
  60. 60.
    Lagaly G, Gonzales MF, Weiss A (1976) Problems in layer-charge determination of montmorillonites. Clay Miner 11: 173Google Scholar
  61. 61.
    Lagaly G, Weiss A (1975) The layer charge of smectitic layer silicates. Proc Int Clay Conf Applied Publ Ltd, Wilmette, Ill, USA, pp 157–172Google Scholar
  62. 62.
    Laves D, Jähn G (1972) Zur quantitativen röntgenographischen Bodenton-Mineralanalyse. Arch Acker- Pflanzenbau Bodenkd 16: 735Google Scholar
  63. 63.
    Lietzke DA, Mortland MM, Whiteside EP (1975) Relationship of geomorphology to origin and distribution of a high charge vermiculitic soil clay. Soil Sci Soc Am Proc 39: 1169Google Scholar
  64. 64.
    Lim CH, Jackson ML (1986) Expandable phyllosilieate reactions with lithium on heating. Clays Clay Min 34: 346Google Scholar
  65. 65.
    Mackenzie RC, Farmer VC (1967) Techniques in soil-clay mineralogy. Reports on the progress of applied chemistry 52: 269Google Scholar
  66. 66.
    Maeda T, Soma K (1986) Physical properties. In: Wada K (ed) Ando soils of Japan, Kyushu Univ Press, Fukuoka pp 99–111Google Scholar
  67. 67.
    Maeda T, Takenaka H, Warkentin BP (1977) Physical properties of allophane soils. Adv Agron 29: 229Google Scholar
  68. 68.
    Maeda T, Warkentin BP (1975) Void changes in allophane soils determining water retention and transmission. Soil Sci Soc Am Proc 39: 398Google Scholar
  69. 69.
    Marshall KC (1965) Clay mineralogy in relation to survival of soil bacteria. Annual Rev Phytopath 13: 357Google Scholar
  70. 70.
    Martin W (1988) Die Erodierbarkeit von Böden unter simulierten und natürlichen Regen und ihre Abhängigkeit von Bodeneigenschaften. Dissertation Fak. Landw. u. Gartenbau, Technische Universität München-WeihenstephanGoogle Scholar
  71. 71.
    McBride MB (1989) Surface chemistry of soil minerals. In: Dixon JB, Weed SB (eds) Minerals in soil environments, 2nd edn. Soil Sci Soc Am Book Ser No 1, pp 35–88Google Scholar
  72. 72.
    McGill WB, Paul EA (1976) Fractionation of soil and 15N nitrogen to separate the organic and clay interactions of immobilized N. Can J Soil Sci 56: 203Google Scholar
  73. 73.
    Mehra OP, Jackson ML (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner 7: 317Google Scholar
  74. 74.
    Mengel K (1991) Ernährung und Stoffwechsel der Pflanze. Fischer, Jena, 646 SGoogle Scholar
  75. 75.
    Meyer B, Kalk E (1964) Verwitterungsmikromorphologie der Mineral-Spezies in mitteleuro-päischen Holozän-Böden aus pleistozänen und holozänen Lockersedimenten. In: Jongerius A (ed) Soil Micromorphology. Elsevier, Amsterdam, pp 109–130Google Scholar
  76. 76.
    Millot G (1970) Geology of clays. Springer, New York, Masson et Cie, Paris, Chapman and Hall, London, pp 429Google Scholar
  77. 77.
    Moore DM, Reynolds RC Jr (1989) X-Ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford New York, pp 332Google Scholar
  78. 78.
    Mortland MM (1970) Clay-organic complexes and interactions. Adv Agron 22: 75Google Scholar
  79. 79.
    Nettleton WD, Brasher BR (1983) Correlation of clay minerals and properties of soil in the Western United States. Soil Sci Soc Am J 47: 1032Google Scholar
  80. 80.
    Niederbudde EA (1975) Veränderungen von Dreischicht-Tonmineralen durch natives K in holozänen Lößböden Mitteldeutschlands und Niederbayerns. Z Pflanzenern Bodenkd 138: 217Google Scholar
  81. 81.
    Niederbudde EA (1978) Tonminerale als Faktoren der K-Verfügbarkeit. Landw Forschung Sonderh. 35: 193Google Scholar
  82. 82.
    Niederbudde EA (1986) Factors affecting potassium release and fixation in soils. Transactions, 12th Intern Congress of Soil Sci, Hamburg, 6: 1155Google Scholar
  83. 83.
    Niederbudde EA, Diez Th (1975) Ergebnisse eines K-Düngungsversuches auf Inceptisol, Exkursion A. Mitteilgn Dtsch Bodenkundl Ges 21: 1Google Scholar
  84. 84.
    Niederbudde EA, Fischer WR (1980) Clay mineral transformations in soils as influenced by potassium release from biotite. Soil Sci 130: 225Google Scholar
  85. 85.
    Niederbudde EA, Kußmaul H (1978) Tonmineraleigenschaften und -Umwandlungen in Parabraunerde-Profilpaaren unter Acker und Wald in Süddeutschland. Geoderma 20: 239Google Scholar
  86. 86.
    Niederbudde EA, Rauh E, Schröder D (1988) Mineralselektive K-Freisetzung aus Böden mit Octadecylammoniumionen (nc=18). Z Pflanzenern Bodenkd 151: 255Google Scholar
  87. 87.
    Niederbudde EA, Rühlicke G (1981) Umwandlung von Al-Chloriten durch Kalkung. Z Pflanzenern Bodenkd 144: 127Google Scholar
  88. 88.
    Niederbudde EA, Schwertmann U (1980) Clay mineralogy of soils. Geol Jb 39: 99Google Scholar
  89. 89.
    Niederbudde EA, Vogl W (1987) Tonmineral- und K-Ca-Austauscheigenschaften von Oberböden des Nährstoffpotentialversuches Hallertau. Z Pflanzenern Bodenkd 150: 297Google Scholar
  90. 90.
    Nòmmik H (1965) Ammonium fixation and other reactions involving a nonenzymatic immobilization of mineral nitrogen in soil. In: Bartholomew WC, Clark FE (eds) Soil Nitrogen. Agronomy No 10. Am Soc Agron Inc. Publisher Madison, WI, USA, pp 198–256Google Scholar
  91. 91.
    Nye PH, Tinker PB (1977) Solute movement in the soil-root system. Blackwell, Oxford, pp 74Google Scholar
  92. 92.
    Oades JM (1989) An introduction to organic matter in mineral soils. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Sci Soc Am Book Series Nr 1. Madison, WI, USA, pp 89–160Google Scholar
  93. 93.
    Oades JM (1990) Associations of colloids in soil aggregates. In: Boodt MF de, Hayes MHB, Herbillon A (eds) Soil colloids and their associations in aggregates. NATO ASI Series B, No215, pp 463–484Google Scholar
  94. 94.
    Okamura Y, Wada K (1983) Electric charge characteristics of horizons of Ando and Red-Yellow soils and weathered pumice. J Soil Sci 34: 287Google Scholar
  95. 95.
    Parfitt RL, Greenland DJ (1970) Adsorption of polysaccharides by montmorillonite. Soil Sci Soc Am Proc 34: 862Google Scholar
  96. 96.
    Parfitt RL, Russell JD, Farmer VC (1976) Confirmation of the surface structures of goethite (α-FeOOH) and phosphated goethite by infrared spectroscopy. J Chem Soc Faraday Trans 1. 72: 1082Google Scholar
  97. 97.
    Paul EA, Ladd JN, Jenkinson DS (eds) (1981) Microbial biomass in soil: measurement and turnover. In: Soil Biochemistry, Dekker, New York, 5: 415Google Scholar
  98. 98.
    Quirk JP, Chute JH (1968) Potassium release from mica-like clay minerals. Proceedings of the 9th Intern Congress of Soil Sci, Adelaide, 2: 671Google Scholar
  99. 99.
    Raij B van, Peech M (1972) Electrochemical properties of some Oxisols and Alfisols of the tropics. Soil Sci Soc Am Proc 36: 587Google Scholar
  100. 100.
    Reichenbach H Graf von, Sehroeder D (1960) Ein Vergleich verschiedener Methoden zur Bestimmung des Kaliumfestlegungsvermögens an einigen schleswig-holsteinischen Böden. Z Pflanzenern Düng Bodenkd 90: 116Google Scholar
  101. 101.
    Reitemeier RF (1951) The chemistry of soil potassium. Adv Agron 3: 113Google Scholar
  102. 102.
    Reuter G, Menning P (1964) Tonminerale in Staunässeböden. Wiss Zs Uni Rostock 13: 573Google Scholar
  103. 103.
    Ritchie JT, Kissel DE, Burnett E (1972) Water movement in undisturbed swelling clay soil. Soil Sci Soc Am Proc 36: 874Google Scholar
  104. 104.
    Robert M, Hardy M, Elsass F (1991) Organization of soil clays in France. Clay Miner 26: 409Google Scholar
  105. 105.
    Ross GJ (1978) Relationships of specific surface area and clay content to shrink-swell potential of soils having different clay mineralogical composition. Can J Soil Sci 58: 159Google Scholar
  106. 106.
    Roth CH, Pavan MA (1991) Effect of lime and gypsum on clay dispersion and infiltration in samples of a Brazilian Oxisol. Geoderma 48: 351Google Scholar
  107. 107.
    Rühlicke G, Niederbudde EA (1985) Determination of layer-charge density of expandable 2:1 clay minerals in soils and loess sediments using the alkylammonium method. Clay Miner 20: 291Google Scholar
  108. 108.
    Sanchez PA (1976) Properties and management of soils in the tropics. Wiley, New York, pp 618Google Scholar
  109. 109.
    Schachtschabel P (1940) Untersuchungen über die Sorption der Tonmineralien und organischen Bodenkolloide und die Bestimmung des Anteil dieser Kolloide an der Sorption im Boden. Kolloid-Beihefte 51: 100Google Scholar
  110. 110.
    Schachtschabel P (1961) Fixierung und Nachlieferung von Kalium- und Ammonium-Ionen. Landw Forschung Sonderh 15: 29Google Scholar
  111. 111.
    Scharpenseel HW, Pietig F (1969) Altersbestimmung von Böden. III. Böden mit Bt-Horizonten und fossile Schwarzerden. Z Pflanzenern Bodenkd 122: 145Google Scholar
  112. 112.
    Scheffer F, Schachtschabel P (1992) Lehrbuch der Bodenkunde, 13. Aufl. Enke, Stuttgart, p 491Google Scholar
  113. 113.
    Schlimme E, Kirse M (1983) Enzymatische-colorimetrische Bestimmung von Purin-Stickstoff im Boden. Z Pflanzenern Bodenkd 146: 207Google Scholar
  114. 114.
    Schnitzer M (1986) Binding of humic substances by soil mineral colloids. In: Huang PM, Schnitzer M (eds) Interactions of soil minerals with natural organics and microbes. Soil Sci Soc Am Publ Nr 17, pp 77–102Google Scholar
  115. 115.
    Schnitzer M (1991) Soil organic matter - The next 75 years. Soil Sci 151: 41Google Scholar
  116. 116.
    Schnitzer M, Kodama H (1967) Reactions between a podzolic fulvic acid and Na-montmorillonite. Soil Sci Soc Am Proc 31: 632Google Scholar
  117. 117.
    Schnitzer M, Rimeester JA, Kodama H (1988) Characterization of the organic matter associated with a soil clay. Soil Sci 145: 448Google Scholar
  118. 118.
    Schulze DG (1981) Identification of soil iron oxide minerals by differential X-ray diffraction. Soil Sci Soc Am J 45: 437Google Scholar
  119. 119.
    Schwertmann U (1961) Die selektive Kationensorption der Tonfraktion einiger Böden aus Sedimenten. Z Pflanzenern Düng Bodenkd 97: 9Google Scholar
  120. 120.
    Schwertmann U (1966) Das Verhalten von Vermiculiten gegenüber Kalium, Aluminium und anderen Kationen - II Chemische Untersuchungen. Z Pflanzenern Düng Bodenkd 115: 200Google Scholar
  121. 121.
    Schwertmann U (1969) Aggregation of aged hydrogen clays. Proc 3rd Intern Clay Conf, Tokyo, 1: 683Google Scholar
  122. 122.
    Schwertmann U (1976) Die Verwitterung mafischer Chlorite. Z Pflanzenern Bodenkd 139: 27Google Scholar
  123. 123.
    Schwertmann U, Süsser P, Nätscher L (1987) Protonenpuffersubstanzen in Böden. Z Pflanzenern Bodenkd 150: 174Google Scholar
  124. 124.
    Sharma ML, Uehara G (1968) Influence of soil structure on water relations in Low Humic Latosols. I. Water rentention. II. Water movement. Soil Sci Soc Am Proc 32: 765Google Scholar
  125. 125.
    Sharpley AN (1989) Relationship between soil potassium forms and mineralogy. Soil Sci Soc Am J 53: 1023Google Scholar
  126. 126.
    Sinclair AH (1979) Availability of potassium to ryegrass from Scottish soils II. Uptake of initially non-exchangeable potassium. J Soil Sci 30: 775Google Scholar
  127. 127.
    Sørensen LH (1972) Role of amino acid metabolites in the formation of soil organic matter. Soil Biol Biochem 4: 245Google Scholar
  128. 128.
    Sparks DL, Huang PM (1985) The physical chemistry of soil potassium. In: Munson RD (ed) Potassium in agriculture. ASA, Madison, WI, USA, pp 201–275Google Scholar
  129. 129.
    Stanjek H, Friedrich R (1986) The determination of layer charge by curve-fitting of Lorentz- and polarization-corrected x-ray diagrams. Clay Miner 21: 183Google Scholar
  130. 130.
    Stanjek H, Niederbudde EA, Häusler W (1992) Improved evaluation of layer charge of n-alkylammonium treated fine soil clays by Lorentz- and polarization correction and curve fitting. Clay Miner 27: 3Google Scholar
  131. 131.
    Stotzky G (1986) Influence of soil mineral colloids on metabolic processes, growth, adhesion, and ecology of microbes and viruses. In: Huang PM, Schnitzer M (eds) Interaction of soil minerals with natural organics and microbes. SSSA Spec Publ Nr 17, Madison, WI, USA, pp 305–428Google Scholar
  132. 132.
    Süsser P, Schwertmann U (1991) Proton buffering in mineral horizons of some acid forest soils. Geoderma 49: 636Google Scholar
  133. 133.
    Talibudeen O, Beasley JD, Lane P, Rajendran N (1978) Assessment of soil potassium reserves available to plant roots. J Soil Sci 29: 207Google Scholar
  134. 134.
    Teveldal S, Jorgensen P, Stuanes AO (1990) Long-term weathering of silicates in a sandy soil at Nordmoen, Southern Norway. Clay Miner 25: 447Google Scholar
  135. 135.
    Thaer A (1837) Grundsätze der rationellen Landwirtschaft. l.Band, 3.Hauptstück, Agronomie oder die Lehre von den Bestandteilen, physischer Eigenschaften, der Beurteilung und Wertschätzung des Bodens. Arnold, Stuttgart, S25–92Google Scholar
  136. 136.
    Theng BKG (1979) Formation and properties of clay-polymer complexes. Elsevier, New York, pp 243–273Google Scholar
  137. 137.
    Theng BKG, Churchman GJ, Newman RH (1986) The occurence of interlayer clay-organic complexes in two New Zealand soils. Soil Sci 142: 262Google Scholar
  138. 138.
    Thorez J (1975) Phyllosilicates and clay minerals. Lelotte, Dison, Belgium, pp 582Google Scholar
  139. 139.
    Tiessen H, Stewart JWB (1983) Particle size fractions and their use in studies of soil organic matter: II. Cultivation effects on organic matter composition in size fractions. Soil Sci Soc Am J 47: 509Google Scholar
  140. 140.
    Torrent J, Barron V, Schwertmann U (1990) Phosphate adsorption and desorption by goethites differing in crystal morphology. Soil Sci Soc Am J 54: 1007Google Scholar
  141. 141.
    Tributh H (1976) Die Umwandlung der glimmerartigen Schichtsilikate zu aufweitbaren Drei-schicht-Tonmineralen. Z Pflanzenern Bodenkd 139: 7Google Scholar
  142. 142.
    Turchenek LW, Oades JM (1979) Fractionation of organo-mineral complexes by sedimentation and density techniques. Geoderma 21: 311Google Scholar
  143. 143.
    Ulrich B, Sumner ME (eds) (1991) Soil Acidity. Springer, Heidelberg, pp 224Google Scholar
  144. 144.
    Vaidyanathan LV, Drew MC, Nye PH (1968) The measurement and mechanism of ion diffusion in soils. IV. The concentration dependence of diffusion coefficients of potassium in soils at a range of moisture levels and a method for the estimation of the differential diffusion coefficient at any concentration. J Soil Sci 19: 94Google Scholar
  145. 145.
    Varadachari Ch, Mondal AH, Ghosh K (1991) Some aspects of clayhumus complexation: Effect of exchangeable cations and lattice charge. Soil Sci 151: 220Google Scholar
  146. 146.
    Visser SA, Caillier M (1988) Observations on the dispersion and aggregation of clays by humic substances. I. Dispersive effects of humic acids. Geoderma 42: 331Google Scholar
  147. 147.
    Volk NJ (1934) The fixation of potash in difficultly available form in soils. Soil Sci 37: 267Google Scholar
  148. 148.
    Wada K (1989) Allophane and imogolite. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Sci Soc Am Book Ser No 1, pp 1051–1088Google Scholar
  149. 149.
    Warkentin BP, Maeda T (1974) Physical properties of allophane soils from the West Indies and Japan. Soil Sci Soc Am Proc 38: 372Google Scholar
  150. 150.
    Warkentin BP, Maeda T (1981) Physical and mechanical characteristics of Andisols. In: Theng BK (ed) Soils with variable change. New Zealand Soc Soil Sci, Palmerston North, pp 281–301Google Scholar
  151. 151.
    Willet JR, Chartres CJ, Nguyen TT (1988) Migration of phosphate into aggregated particles of ferrihydrite. J Soil Sci 39: 275Google Scholar
  152. 152.
    Wilson MJ (1987) A handbook of determinative methods in clay mineralogy. Blackie & Son, London, pp 308Google Scholar
  153. 153.
    Young JL, Aldag RW (1982) Inorganic forms of nitrogen in soil. In: Nitrogen in agricultural soils - Agronomy Monograph Nr22, ASA-CSSA-SSSA, pp43–66Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag, GmbH & Co. KG Darmstadt 1993

Authors and Affiliations

  • U. Schwertmann
  • E.-A. Niederbudde

There are no affiliations available

Personalised recommendations