Skip to main content

Tonminerale in Böden

  • Chapter

Zusammenfassung

Die Gesteine werden in weiten Teilen der festen Erde von einer dünnen Haut, der Bodendecke, überzogen. Sie entstand als ein eigenständiger Naturkörper aus der Wechselwirkung von Atmo-, Bio- und Lithosphäre und wird Pedosphäre genannt. Die Pedosphäre ist der Träger der terrestrischen Biosphäre und erfüllt damit die Anforderungen an unsere Versorgung mit lebensnotwendigen Nahrungsmitteln und anderen organischen Stoffen. Als Teil terrestrischer Ökosysteme nimmt sie aktiv am Stoffhaushalt der festen Erde teil. Die Pedosphäre besteht aus einem Mosaik unterschiedlichster Böden. Sie unterscheiden sich erheblich in ihrer Fähigkeit, jenen Anforderungen zu genügen. Eine ihrer intrinsischen Eigenschaften, die hierauf im starkem Maße Einfluß nimmt, ist die Korngrößenverteilung. Daher werden in der Bodenkunde die Böden weltweit und seit altersher nach den Anteilen ihrer Korngrößen Ton (>2 μm), Schluff (2−63 μm) und Sand (63−2000 μm) bezeichnet. Herrscht eine der drei Kornfraktionen vor, so spricht man von Ton-, Schluff- und Sandböden; im Lehmboden sind alle 3 Kornfraktionen in ungefähr gleichen Anteilen vertreten.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Anderson DW, Saggar S, Bettany JR, Stewart JWB (1981) Particle size fractions and their use in studies of soil organic matter: I. The nature and distribution of forms of carbon, nitrogen and sulfur. Soil Sci Soc Am J 45: 767

    Google Scholar 

  2. Avery BW, Bullock P (1977) Mineralogy of clay soils in relation to soil classification. Soil Survey technical monograph 10. Harpenden U K

    Google Scholar 

  3. Becher HH (1991) Über die Aggregatdichte und deren mögliche Auswirkung auf den Boden-lösungstransport. Z Pflanzenern Bodenkd 154: 3

    Google Scholar 

  4. Beckett PHT (1964) Studies on soil potassium. II. The “immediate” Q/I relations of labile potassium in the soil. J Soil Sci 15: 9

    Google Scholar 

  5. Berndt RD, Coughlan KJ (1976) The nature of changes in bulk density with water content in a cracking clay. Aust J Soil Res 15: 27

    Google Scholar 

  6. Bettany JR, Saggar S, Stewart JWB (1980) Comparison of the amounts and forms of sulfur in soil organic matter fractions after 65 years of cultivation. Soil Sci Soc Am J 44: 70

    Google Scholar 

  7. Boodt MF de, Hayes MHB, Herbillon A (1990) Soil colloids and their associations in aggregates. NATO ASI Series B, vol 215. Plenum Press, New York, pp 598

    Google Scholar 

  8. Breemen N van, Mulder J, Driscoll CT (1983) Acidification and alkalinization of soils. Plant and Soil. 75: 283

    Google Scholar 

  9. Brindley GW, Brown G (1980) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society, London, pp 594

    Google Scholar 

  10. Burns RG (1986) Interaction of enzymes with soil mineral and organic colloids. In: Huang PM, Schnitzer M (eds) Interactions of soil minerals with natural organics and microbes. SSSA Spec. Publ. Number 17, Madison, WI, pp 429–451

    Google Scholar 

  11. Chichester FW (1970) Total and N15-labelled nitrogen of soil organo-mineral sedimentation fractions. Plant and Soil 33: 437

    Google Scholar 

  12. Chien SH (1978) Reactions of phosphate rocks, rhenania phosphate, and superphosphate with an acid soil. Soil Sci Soc Am J 42: 705

    Google Scholar 

  13. Churchman GJ (1980) Clay minerals formed from micas and chlorites in some New Zealand soils. Clay Miner 15: 59

    Google Scholar 

  14. Clapp CE, Harrison R, Hayes MHB (1991) Interactions between organic macromolecules and soil inorganic colloids and soils. In: Bolt GH, Boodt de MF, Hayes MHB, McBride MB (eds) Interactions at the soil colloid - soil solution interface. NATO ASI Series, vol E190. Kluwer, the Netherlands, pp 409–468

    Google Scholar 

  15. Davis JA, Kent DB (1990) Surface complexation modeling in aqueous geochemistry. In: Hochella MF Jr, White AF (eds) Mineral-water interface geochemistry. Miner Soc Am Reviews in Mineralogy 23: 177

    Google Scholar 

  16. Dexter AR, Chan KY (1991) Soil mechanical properties as influenced by exchangeable cations. J Soil Sci 42: 219

    Google Scholar 

  17. Dhillon SK, Dhillon KS (1990) Kinetics of release of nonexchangeable potassium by cation-saturated resins from Red ( Alfisols ), Black (Vertisols) and Alluvial (Inceptisols) soils of India. Geoderma 47: 283

    Google Scholar 

  18. Dixon JB, Weed SB (1989) Minerals in soil environments. Soil Sci Soc Am Book Series Nr 1, Madison, WI, USA, p 1244

    Google Scholar 

  19. Domaar JF (1984) Monosaccharides in hydrolysates of waterstable aggregates after 67 years of cropping to spring wheat as determined by capillary gas chromatography. Can J Soil Sci 64: 647

    Google Scholar 

  20. Dubach P, Zweifel G, Bach R, Deûel H (1955) Untersuchungen an der Fulvosäure-Fraktion einiger schweizerischer Böden. Z Pflanzenern Düng Bodenkd 69: 97

    Google Scholar 

  21. Eswaran H, Ikawa H, Kimble JM (1986) Oxisols of the world. Proc Int Symp Red Soils, Beijing, China. Elsevier, Amsterdam, pp 90–123

    Google Scholar 

  22. Fanning DS, Vissarion Z, Keramidas Z, El-Desoky MA (1989) Micas. In: Dixon JB, Weed SB (eds) Minerals in soil environments. SSSA Book Series Nr 1, Madison, WI, pp 551–634

    Google Scholar 

  23. Filip Z (1975) Wechselbeziehungen zwischen Mikroorganismen und Tonmineralen und ihre Auswirkung auf die Bodendynamik. Habilitationsschrift, Universität Gießen

    Google Scholar 

  24. Fischer WR, Pfanneberg T, Niederbudde EA, Medina R (1981) Transformation of 15N-la-belled ammonium in two soils differing in NH4-fixing capacity. J Soil Sci 32: 409

    Google Scholar 

  25. Fox RL, Xue-Yuan L (1986) Phosphate fertilizer requirements of weathered soils and residual phosphate fertilizer efficiency as indicated by phosphate sorption curves. Proc Int Symp Red Soils. Elsevier, Amsterdam, pp 468–478

    Google Scholar 

  26. Freeney JR, Miller RJ (1970) Investigation of the clay mineral protection theory for non-hydrolysable nitrogen in soil. J Sci Fd Agric 21: 57

    Google Scholar 

  27. Gebhardt H, Meyer B, Scheffer F (1966) Zwischenschichtbelegung und Expansions verhalten von Dreischicht-Tonmineralen im CaC03-gepufferten Hydrogencarbonatmilieu kalkreicher Lockersedimentböden (Beispiel Löß). Z Pflanzenern Düng Bodenkd 114: 90

    Google Scholar 

  28. Gjems O (1967) Studies on clay minerals and clay-mineral formation in soil profiles in Scandinavia. Norw Forest Res Inst, Vollebekk, Norway, pp 415

    Google Scholar 

  29. Goldberg S, Forster HS (1990) Flocculation of reference clays and arid-zone clays. Soil Sci Soc Am J 54: 714

    Google Scholar 

  30. Goulding KWT, Loveland PJ (1986) The classification and mapping of potassium reserves in soils of England and Wales. J Soil Sci 37: 555

    Google Scholar 

  31. Graham RC, Southard AR (1983) Genesis of a vertisol and an associated mollisol in Northern Utah. Soil Sci Soc Am J 47: 552

    Google Scholar 

  32. Gruner JW (1939) Ammonium mica synthesized from vermiculite. Am Miner 24: 428

    Google Scholar 

  33. Guckert A, Breisch H, Reisinger O (1975) Interface sol-racine I. Etude au microscope electronique des relations mucigel-argile-microorganismes. Soil Biol. Biochem. 1: 214

    Google Scholar 

  34. Guckert A, Tok HH, Jacquin F (1977) Biodégradation de polysaccharides bacteriens adsorbés sur une montmorillonite. Symp Soil Sci Organic matter studies, Proc Braunschw 1: 403

    Google Scholar 

  35. Haan FAM de, Bolt GH, Pieters BGM (1965) Diffusion of potassium-40 into an illite during prolonged shaking. Proc Soil Sci Soc Am 29: 528

    Google Scholar 

  36. Haider K, Filip Z, Martin JP (1970) Einfluß von Montmorillonit auf die Bildung von Biomasse und Stoffwechselzwischenprodukten durch einige Mikroorganismen. Arch Mikrobiol 73: 201

    Google Scholar 

  37. Hartge KH, Horn R (1991) Einführung in die Bodenphysik, 2. Aufl. Enke, Stuttgart

    Google Scholar 

  38. Hayes MHB, Himes FL (1986) Nature and properties of humus-mineral complexes. In: Huang PM, Schnitzer M (eds) Interactions of soil minerals with natural organics and microbes. Soil Sci Soc Am Publ Nr 17, pp 103–158

    Google Scholar 

  39. Hildebrand EE (1987) Zustand und Entwicklung chemischer Eigenschaften von Mineralböden aus Standorten mit erkrankten Waldbeständen. Forschungsbericht. Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg, 41 S

    Google Scholar 

  40. Howard SA, Preston KD (1989) Profile fitting of powder diffraction patterns. In: Bish DL, Post JE (eds) Modern powder diffraction. Min Soc Amer, Washington, DC, pp 217–276

    Google Scholar 

  41. Hower J, Mowatt TC (1966) The mineralogy of illites and mixedlayer illite/montmorillonites. Am Mineralogist 51: 825

    Google Scholar 

  42. Huang PM, Lee S Y (1969) Effect of drainage on weathering transformations of mineral colloids of some Canadain prairie soils. Proc Int Clay Conf 1: 541

    Google Scholar 

  43. Iwata S, Yamamoto K, Sato T (1990) Amorphous inorganic material contents and changes in plasticity indexes by airdrying. Soil Sci Soc Am J 54: 558

    Google Scholar 

  44. Jackson ML, Tyler SA, Willis AL, Bourbeau GA, Pennington RP (1948) Weathering sequence of clay-size minerals in soils and sediments. I. Fundamental generalizations. J Phys Coll Chem 52: 1237

    Google Scholar 

  45. Jackson ML, Hseung Y, Corey RB, Evans EJ, van der Heuvel RC (1952) Weathering sequence of clay-size minerals in soils and sediment: II. Chemical weathering of layer silicates. Soil Sci Soc Am Proc 16: 3

    Google Scholar 

  46. Janik LM, Raupach M (1977) An iterative, least-squares program to separate infrared absorption spectra into their component bands. CSIRO Div of Soil Tech. Paper 35: 1

    Google Scholar 

  47. Johns WD, Grim RE, Bradley WF (1954) Quantitative estimations of clay minerals by diffraction methods. J Sed Petro 24: 242

    Google Scholar 

  48. Jones RC (1989) A computer technique for X-ray diffraction curve fitting/peak decomposition. In: Pevear DR, Mumpton FA (eds) Quantitative mineral analysis of clays. The clay minerals Society, Evergreen, Colorado, 1: 52

    Google Scholar 

  49. Kämpf N, Schwertmann U (1985) Properties of goethite and hematite in kaolinitic soils of southern and central Brazil. Soil Sci 139: 344

    Google Scholar 

  50. Kantor W (1971) Mineralogische und chemische Eigenschaften von Katenen tropischer Böden in Kenia und ihr pedogenetisch bedingter Nährstoffhaushalt. Müller, Berlin, 117 S

    Google Scholar 

  51. Karathanasis AD, Evangelou VP (1986) Water sorption characteristics of aluminum- and calcium-saturated soil clays. Soil Sci Soc Am J 50: 1063

    Google Scholar 

  52. Karathanasis AD, Hajek BF (1982) Quantitative evaluation of water and adsorption on soil clays. Soil Sci Am J 46: 1321

    Google Scholar 

  53. Kittrick JA (ed) (1985) Mineral classification of soils. Soil Sci Soc Am Spec Publ Nr 16, pp 178

    Google Scholar 

  54. Knauss KG, Wolery TJ (1989) Muscovite dissolution kinetics as a function of pH and time at 70 °C. Geochim Cosmochim Acta 53: 1493

    Google Scholar 

  55. Kodama H (1979) Clay minerals in Canadian soils: Their origin, distribution, and alteration. Can J Soil Sci 59: 37

    Google Scholar 

  56. Kolterman DW, Truog E (1953) Determination of fixed soil potassium. Soil Sci Soc Am Proc 17: 347

    Google Scholar 

  57. Kowalenko CG, Cameron DR (1978) Nitrogen transformations in soil plant systems in three years of field experiments using tracer and non-tracer methods of an ammonium-fixing soil. Can J Soil Sci 58: 195

    Google Scholar 

  58. Kowalenko CG, Ross G J (1980) Studies in the dynamics of “recently” clay fixed NH4 using 15N. Can J Soil Sci 60: 61

    Google Scholar 

  59. Ladd JN, Oades JM, Amato M (1981) Microbial biomass formed from 14C, 15N-labelled plant material decomposing in soils in the field. Soil Biol Biochem 13: 119

    Google Scholar 

  60. Lagaly G, Gonzales MF, Weiss A (1976) Problems in layer-charge determination of montmorillonites. Clay Miner 11: 173

    Google Scholar 

  61. Lagaly G, Weiss A (1975) The layer charge of smectitic layer silicates. Proc Int Clay Conf Applied Publ Ltd, Wilmette, Ill, USA, pp 157–172

    Google Scholar 

  62. Laves D, Jähn G (1972) Zur quantitativen röntgenographischen Bodenton-Mineralanalyse. Arch Acker- Pflanzenbau Bodenkd 16: 735

    Google Scholar 

  63. Lietzke DA, Mortland MM, Whiteside EP (1975) Relationship of geomorphology to origin and distribution of a high charge vermiculitic soil clay. Soil Sci Soc Am Proc 39: 1169

    Google Scholar 

  64. Lim CH, Jackson ML (1986) Expandable phyllosilieate reactions with lithium on heating. Clays Clay Min 34: 346

    Google Scholar 

  65. Mackenzie RC, Farmer VC (1967) Techniques in soil-clay mineralogy. Reports on the progress of applied chemistry 52: 269

    Google Scholar 

  66. Maeda T, Soma K (1986) Physical properties. In: Wada K (ed) Ando soils of Japan, Kyushu Univ Press, Fukuoka pp 99–111

    Google Scholar 

  67. Maeda T, Takenaka H, Warkentin BP (1977) Physical properties of allophane soils. Adv Agron 29: 229

    Google Scholar 

  68. Maeda T, Warkentin BP (1975) Void changes in allophane soils determining water retention and transmission. Soil Sci Soc Am Proc 39: 398

    Google Scholar 

  69. Marshall KC (1965) Clay mineralogy in relation to survival of soil bacteria. Annual Rev Phytopath 13: 357

    Google Scholar 

  70. Martin W (1988) Die Erodierbarkeit von Böden unter simulierten und natürlichen Regen und ihre Abhängigkeit von Bodeneigenschaften. Dissertation Fak. Landw. u. Gartenbau, Technische Universität München-Weihenstephan

    Google Scholar 

  71. McBride MB (1989) Surface chemistry of soil minerals. In: Dixon JB, Weed SB (eds) Minerals in soil environments, 2nd edn. Soil Sci Soc Am Book Ser No 1, pp 35–88

    Google Scholar 

  72. McGill WB, Paul EA (1976) Fractionation of soil and 15N nitrogen to separate the organic and clay interactions of immobilized N. Can J Soil Sci 56: 203

    Google Scholar 

  73. Mehra OP, Jackson ML (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner 7: 317

    Google Scholar 

  74. Mengel K (1991) Ernährung und Stoffwechsel der Pflanze. Fischer, Jena, 646 S

    Google Scholar 

  75. Meyer B, Kalk E (1964) Verwitterungsmikromorphologie der Mineral-Spezies in mitteleuro-päischen Holozän-Böden aus pleistozänen und holozänen Lockersedimenten. In: Jongerius A (ed) Soil Micromorphology. Elsevier, Amsterdam, pp 109–130

    Google Scholar 

  76. Millot G (1970) Geology of clays. Springer, New York, Masson et Cie, Paris, Chapman and Hall, London, pp 429

    Google Scholar 

  77. Moore DM, Reynolds RC Jr (1989) X-Ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford New York, pp 332

    Google Scholar 

  78. Mortland MM (1970) Clay-organic complexes and interactions. Adv Agron 22: 75

    Google Scholar 

  79. Nettleton WD, Brasher BR (1983) Correlation of clay minerals and properties of soil in the Western United States. Soil Sci Soc Am J 47: 1032

    Google Scholar 

  80. Niederbudde EA (1975) Veränderungen von Dreischicht-Tonmineralen durch natives K in holozänen Lößböden Mitteldeutschlands und Niederbayerns. Z Pflanzenern Bodenkd 138: 217

    Google Scholar 

  81. Niederbudde EA (1978) Tonminerale als Faktoren der K-Verfügbarkeit. Landw Forschung Sonderh. 35: 193

    Google Scholar 

  82. Niederbudde EA (1986) Factors affecting potassium release and fixation in soils. Transactions, 12th Intern Congress of Soil Sci, Hamburg, 6: 1155

    Google Scholar 

  83. Niederbudde EA, Diez Th (1975) Ergebnisse eines K-Düngungsversuches auf Inceptisol, Exkursion A. Mitteilgn Dtsch Bodenkundl Ges 21: 1

    Google Scholar 

  84. Niederbudde EA, Fischer WR (1980) Clay mineral transformations in soils as influenced by potassium release from biotite. Soil Sci 130: 225

    Google Scholar 

  85. Niederbudde EA, Kußmaul H (1978) Tonmineraleigenschaften und -Umwandlungen in Parabraunerde-Profilpaaren unter Acker und Wald in Süddeutschland. Geoderma 20: 239

    Google Scholar 

  86. Niederbudde EA, Rauh E, Schröder D (1988) Mineralselektive K-Freisetzung aus Böden mit Octadecylammoniumionen (nc=18). Z Pflanzenern Bodenkd 151: 255

    Google Scholar 

  87. Niederbudde EA, Rühlicke G (1981) Umwandlung von Al-Chloriten durch Kalkung. Z Pflanzenern Bodenkd 144: 127

    Google Scholar 

  88. Niederbudde EA, Schwertmann U (1980) Clay mineralogy of soils. Geol Jb 39: 99

    Google Scholar 

  89. Niederbudde EA, Vogl W (1987) Tonmineral- und K-Ca-Austauscheigenschaften von Oberböden des Nährstoffpotentialversuches Hallertau. Z Pflanzenern Bodenkd 150: 297

    Google Scholar 

  90. Nòmmik H (1965) Ammonium fixation and other reactions involving a nonenzymatic immobilization of mineral nitrogen in soil. In: Bartholomew WC, Clark FE (eds) Soil Nitrogen. Agronomy No 10. Am Soc Agron Inc. Publisher Madison, WI, USA, pp 198–256

    Google Scholar 

  91. Nye PH, Tinker PB (1977) Solute movement in the soil-root system. Blackwell, Oxford, pp 74

    Google Scholar 

  92. Oades JM (1989) An introduction to organic matter in mineral soils. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Sci Soc Am Book Series Nr 1. Madison, WI, USA, pp 89–160

    Google Scholar 

  93. Oades JM (1990) Associations of colloids in soil aggregates. In: Boodt MF de, Hayes MHB, Herbillon A (eds) Soil colloids and their associations in aggregates. NATO ASI Series B, No215, pp 463–484

    Google Scholar 

  94. Okamura Y, Wada K (1983) Electric charge characteristics of horizons of Ando and Red-Yellow soils and weathered pumice. J Soil Sci 34: 287

    Google Scholar 

  95. Parfitt RL, Greenland DJ (1970) Adsorption of polysaccharides by montmorillonite. Soil Sci Soc Am Proc 34: 862

    Google Scholar 

  96. Parfitt RL, Russell JD, Farmer VC (1976) Confirmation of the surface structures of goethite (α-FeOOH) and phosphated goethite by infrared spectroscopy. J Chem Soc Faraday Trans 1. 72: 1082

    Google Scholar 

  97. Paul EA, Ladd JN, Jenkinson DS (eds) (1981) Microbial biomass in soil: measurement and turnover. In: Soil Biochemistry, Dekker, New York, 5: 415

    Google Scholar 

  98. Quirk JP, Chute JH (1968) Potassium release from mica-like clay minerals. Proceedings of the 9th Intern Congress of Soil Sci, Adelaide, 2: 671

    Google Scholar 

  99. Raij B van, Peech M (1972) Electrochemical properties of some Oxisols and Alfisols of the tropics. Soil Sci Soc Am Proc 36: 587

    Google Scholar 

  100. Reichenbach H Graf von, Sehroeder D (1960) Ein Vergleich verschiedener Methoden zur Bestimmung des Kaliumfestlegungsvermögens an einigen schleswig-holsteinischen Böden. Z Pflanzenern Düng Bodenkd 90: 116

    Google Scholar 

  101. Reitemeier RF (1951) The chemistry of soil potassium. Adv Agron 3: 113

    Google Scholar 

  102. Reuter G, Menning P (1964) Tonminerale in Staunässeböden. Wiss Zs Uni Rostock 13: 573

    Google Scholar 

  103. Ritchie JT, Kissel DE, Burnett E (1972) Water movement in undisturbed swelling clay soil. Soil Sci Soc Am Proc 36: 874

    Google Scholar 

  104. Robert M, Hardy M, Elsass F (1991) Organization of soil clays in France. Clay Miner 26: 409

    Google Scholar 

  105. Ross GJ (1978) Relationships of specific surface area and clay content to shrink-swell potential of soils having different clay mineralogical composition. Can J Soil Sci 58: 159

    Google Scholar 

  106. Roth CH, Pavan MA (1991) Effect of lime and gypsum on clay dispersion and infiltration in samples of a Brazilian Oxisol. Geoderma 48: 351

    Google Scholar 

  107. Rühlicke G, Niederbudde EA (1985) Determination of layer-charge density of expandable 2:1 clay minerals in soils and loess sediments using the alkylammonium method. Clay Miner 20: 291

    Google Scholar 

  108. Sanchez PA (1976) Properties and management of soils in the tropics. Wiley, New York, pp 618

    Google Scholar 

  109. Schachtschabel P (1940) Untersuchungen über die Sorption der Tonmineralien und organischen Bodenkolloide und die Bestimmung des Anteil dieser Kolloide an der Sorption im Boden. Kolloid-Beihefte 51: 100

    Google Scholar 

  110. Schachtschabel P (1961) Fixierung und Nachlieferung von Kalium- und Ammonium-Ionen. Landw Forschung Sonderh 15: 29

    Google Scholar 

  111. Scharpenseel HW, Pietig F (1969) Altersbestimmung von Böden. III. Böden mit Bt-Horizonten und fossile Schwarzerden. Z Pflanzenern Bodenkd 122: 145

    Google Scholar 

  112. Scheffer F, Schachtschabel P (1992) Lehrbuch der Bodenkunde, 13. Aufl. Enke, Stuttgart, p 491

    Google Scholar 

  113. Schlimme E, Kirse M (1983) Enzymatische-colorimetrische Bestimmung von Purin-Stickstoff im Boden. Z Pflanzenern Bodenkd 146: 207

    Google Scholar 

  114. Schnitzer M (1986) Binding of humic substances by soil mineral colloids. In: Huang PM, Schnitzer M (eds) Interactions of soil minerals with natural organics and microbes. Soil Sci Soc Am Publ Nr 17, pp 77–102

    Google Scholar 

  115. Schnitzer M (1991) Soil organic matter - The next 75 years. Soil Sci 151: 41

    Google Scholar 

  116. Schnitzer M, Kodama H (1967) Reactions between a podzolic fulvic acid and Na-montmorillonite. Soil Sci Soc Am Proc 31: 632

    Google Scholar 

  117. Schnitzer M, Rimeester JA, Kodama H (1988) Characterization of the organic matter associated with a soil clay. Soil Sci 145: 448

    Google Scholar 

  118. Schulze DG (1981) Identification of soil iron oxide minerals by differential X-ray diffraction. Soil Sci Soc Am J 45: 437

    Google Scholar 

  119. Schwertmann U (1961) Die selektive Kationensorption der Tonfraktion einiger Böden aus Sedimenten. Z Pflanzenern Düng Bodenkd 97: 9

    Google Scholar 

  120. Schwertmann U (1966) Das Verhalten von Vermiculiten gegenüber Kalium, Aluminium und anderen Kationen - II Chemische Untersuchungen. Z Pflanzenern Düng Bodenkd 115: 200

    Google Scholar 

  121. Schwertmann U (1969) Aggregation of aged hydrogen clays. Proc 3rd Intern Clay Conf, Tokyo, 1: 683

    Google Scholar 

  122. Schwertmann U (1976) Die Verwitterung mafischer Chlorite. Z Pflanzenern Bodenkd 139: 27

    Google Scholar 

  123. Schwertmann U, Süsser P, Nätscher L (1987) Protonenpuffersubstanzen in Böden. Z Pflanzenern Bodenkd 150: 174

    Google Scholar 

  124. Sharma ML, Uehara G (1968) Influence of soil structure on water relations in Low Humic Latosols. I. Water rentention. II. Water movement. Soil Sci Soc Am Proc 32: 765

    Google Scholar 

  125. Sharpley AN (1989) Relationship between soil potassium forms and mineralogy. Soil Sci Soc Am J 53: 1023

    Google Scholar 

  126. Sinclair AH (1979) Availability of potassium to ryegrass from Scottish soils II. Uptake of initially non-exchangeable potassium. J Soil Sci 30: 775

    Google Scholar 

  127. Sørensen LH (1972) Role of amino acid metabolites in the formation of soil organic matter. Soil Biol Biochem 4: 245

    Google Scholar 

  128. Sparks DL, Huang PM (1985) The physical chemistry of soil potassium. In: Munson RD (ed) Potassium in agriculture. ASA, Madison, WI, USA, pp 201–275

    Google Scholar 

  129. Stanjek H, Friedrich R (1986) The determination of layer charge by curve-fitting of Lorentz- and polarization-corrected x-ray diagrams. Clay Miner 21: 183

    Google Scholar 

  130. Stanjek H, Niederbudde EA, Häusler W (1992) Improved evaluation of layer charge of n-alkylammonium treated fine soil clays by Lorentz- and polarization correction and curve fitting. Clay Miner 27: 3

    Google Scholar 

  131. Stotzky G (1986) Influence of soil mineral colloids on metabolic processes, growth, adhesion, and ecology of microbes and viruses. In: Huang PM, Schnitzer M (eds) Interaction of soil minerals with natural organics and microbes. SSSA Spec Publ Nr 17, Madison, WI, USA, pp 305–428

    Google Scholar 

  132. Süsser P, Schwertmann U (1991) Proton buffering in mineral horizons of some acid forest soils. Geoderma 49: 636

    Google Scholar 

  133. Talibudeen O, Beasley JD, Lane P, Rajendran N (1978) Assessment of soil potassium reserves available to plant roots. J Soil Sci 29: 207

    Google Scholar 

  134. Teveldal S, Jorgensen P, Stuanes AO (1990) Long-term weathering of silicates in a sandy soil at Nordmoen, Southern Norway. Clay Miner 25: 447

    Google Scholar 

  135. Thaer A (1837) Grundsätze der rationellen Landwirtschaft. l.Band, 3.Hauptstück, Agronomie oder die Lehre von den Bestandteilen, physischer Eigenschaften, der Beurteilung und Wertschätzung des Bodens. Arnold, Stuttgart, S25–92

    Google Scholar 

  136. Theng BKG (1979) Formation and properties of clay-polymer complexes. Elsevier, New York, pp 243–273

    Google Scholar 

  137. Theng BKG, Churchman GJ, Newman RH (1986) The occurence of interlayer clay-organic complexes in two New Zealand soils. Soil Sci 142: 262

    Google Scholar 

  138. Thorez J (1975) Phyllosilicates and clay minerals. Lelotte, Dison, Belgium, pp 582

    Google Scholar 

  139. Tiessen H, Stewart JWB (1983) Particle size fractions and their use in studies of soil organic matter: II. Cultivation effects on organic matter composition in size fractions. Soil Sci Soc Am J 47: 509

    Google Scholar 

  140. Torrent J, Barron V, Schwertmann U (1990) Phosphate adsorption and desorption by goethites differing in crystal morphology. Soil Sci Soc Am J 54: 1007

    Google Scholar 

  141. Tributh H (1976) Die Umwandlung der glimmerartigen Schichtsilikate zu aufweitbaren Drei-schicht-Tonmineralen. Z Pflanzenern Bodenkd 139: 7

    Google Scholar 

  142. Turchenek LW, Oades JM (1979) Fractionation of organo-mineral complexes by sedimentation and density techniques. Geoderma 21: 311

    Google Scholar 

  143. Ulrich B, Sumner ME (eds) (1991) Soil Acidity. Springer, Heidelberg, pp 224

    Google Scholar 

  144. Vaidyanathan LV, Drew MC, Nye PH (1968) The measurement and mechanism of ion diffusion in soils. IV. The concentration dependence of diffusion coefficients of potassium in soils at a range of moisture levels and a method for the estimation of the differential diffusion coefficient at any concentration. J Soil Sci 19: 94

    Google Scholar 

  145. Varadachari Ch, Mondal AH, Ghosh K (1991) Some aspects of clayhumus complexation: Effect of exchangeable cations and lattice charge. Soil Sci 151: 220

    Google Scholar 

  146. Visser SA, Caillier M (1988) Observations on the dispersion and aggregation of clays by humic substances. I. Dispersive effects of humic acids. Geoderma 42: 331

    Google Scholar 

  147. Volk NJ (1934) The fixation of potash in difficultly available form in soils. Soil Sci 37: 267

    Google Scholar 

  148. Wada K (1989) Allophane and imogolite. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Sci Soc Am Book Ser No 1, pp 1051–1088

    Google Scholar 

  149. Warkentin BP, Maeda T (1974) Physical properties of allophane soils from the West Indies and Japan. Soil Sci Soc Am Proc 38: 372

    Google Scholar 

  150. Warkentin BP, Maeda T (1981) Physical and mechanical characteristics of Andisols. In: Theng BK (ed) Soils with variable change. New Zealand Soc Soil Sci, Palmerston North, pp 281–301

    Google Scholar 

  151. Willet JR, Chartres CJ, Nguyen TT (1988) Migration of phosphate into aggregated particles of ferrihydrite. J Soil Sci 39: 275

    Google Scholar 

  152. Wilson MJ (1987) A handbook of determinative methods in clay mineralogy. Blackie & Son, London, pp 308

    Google Scholar 

  153. Young JL, Aldag RW (1982) Inorganic forms of nitrogen in soil. In: Nitrogen in agricultural soils - Agronomy Monograph Nr22, ASA-CSSA-SSSA, pp43–66

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Dr. Dietrich Steinkopff Verlag, GmbH & Co. KG Darmstadt

About this chapter

Cite this chapter

Schwertmann, U., Niederbudde, EA. (1993). Tonminerale in Böden. In: Jasmund, K., Lagaly, G. (eds) Tonminerale und Tone. Steinkopff. https://doi.org/10.1007/978-3-642-72488-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72488-6_6

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-0923-8

  • Online ISBN: 978-3-642-72488-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics