Advertisement

Bildung und Umbildung von Tonmineralen

  • K. Jasmund
Chapter
  • 275 Downloads

Zusammenfassung

Bildung und Umbildung von Tonmineralen in ihren unterschiedlichen chemischen wie strukturellen Eigenschaften werden weitgehend durch die großen natürlichen Reaktionsräume, die sogen. Environments bestimmt, die von Millot (73) definiert wurden. Im Folgenden werden behandelt: das „Verwitterungsenvironment“, das „sedimentäre Environment“ und das „diagenetisch-hydrothermale Environment“. Die Tonmineralbildung in der Verwitterungszone wird bestimmt durch die Wechselwirkung der Gesteine in der obersten kontinentalen Erdkruste mit der Hydrosphäre. Mit dem Zerfall der Gesteine in Einzelminerale setzt bereits die chemische Verwitterung ein, d. h. der Lösungsprozeß durch die wäßrige Phase. Die Porenlösung füllt den Raum zwischen den Körnern aus und wird vom sauren Niederschlagswasser bei Verdunstung und Abfluß immer wieder nachgeliefert. Tonminerale scheiden sich in langdauernden chemischen Prozessen aus der Porenlösung aus, wenn bestimmte Sättigungsgrenzen durch gelöstes Material erreicht sind. Aus einem anfänglichen Mineralgrus von Eruptivgesteinen wird mit fortschreitender Verwitterungstätigkeit ein Boden, bestehend aus detrischen, d. h. nur teilweise gelösten primären Mineralen und neugebildeten Tonmineralen, was kennzeichnend für die Verwitterungszone ist.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Aagaard P, Helgeson HC (1983) Activity/compositon relations among silicates and aquous solutions II. Chemical and thermodynamic consequences of ideal mixing of atoms on homological sites in montmorillionites, illites and mixed-layer clays. Clays Clay Min 31: 207–217CrossRefGoogle Scholar
  2. 2.
    Ahn JH, Peacor DR (1986) Transmission and analytical electron microscopy of the smectite-to-illite transition. Clays Clay Min 34: 165–179CrossRefGoogle Scholar
  3. 3.
    Ahn JH, Peacor DR (1989) Illite/smectite from gulf coast shales: A reappraisal of transition. Clays Clay Min 37: 542–546CrossRefGoogle Scholar
  4. 4.
    Banfield JF, Eggleton RA (1988) Transmission electron microscope study of biotite weathering. Clays Clay Min 36: 47–60CrossRefGoogle Scholar
  5. 5.
    Banfield JF, Eggleton RA (1990) Analytical transmission electron microscope studies of plagioclase, muscovite and K-feldspar weathering. Clays Clay Min 38: 77–89CrossRefGoogle Scholar
  6. 6.
    Baronnet A (1982) Growth kinetics of the silicates. A review of basic concepts. Fortschr d Min 38: 185–198Google Scholar
  7. 7.
    Barshad I (1966) The effect of variation in precipitation on the nature of clay mineral formation in soils from acid and basic igneous rocks. In: Heller L, Weiss A (eds) Proc Intern Clay Conf (1966) vol I. Jerusalem Israel Program for Sientific Translation, pp 167–173Google Scholar
  8. 8.
    Bell TE (1986) Microstructure in mixed-layer illite/smectite and its relationship to the reaction of smectite to illite. Clays Clay Min 34: 146–154CrossRefGoogle Scholar
  9. 9.
    Bethge CM, Vergo N, Altaner SP (1986) Pathways of smectite illitization. Clays Clay Min 34: 125–135CrossRefGoogle Scholar
  10. 10.
    Boettcher AL (1966) Vermiculite, hydrobiotite and biotite in the rainy creek igneous complex near Libby Montana. Clay Min 6; 283–296CrossRefGoogle Scholar
  11. 11.
    Boles JR, Franks SG (1979) Clay diagenesis in Wilcox Sandstones of south-west Texas: implications of smectite diagenesis on sandstone cementation. Journ Sedim Petrology 49: 55–70Google Scholar
  12. 12.
    Burst JF (1969) Diagenesis of Gulf Coast clayly sediments and its possible relationship to petroleum migration. Am Assoc Petr Bull 33: 73–93Google Scholar
  13. 13.
    Caillère S, Hénin S (1962) Vues d’ensemble sur le problème de la synthèse des minéraux argileux a basse température. Colloque No. 105 du C.N.R.S. In: Geneśe et synthèse des argiles 32–41; Editions du colloques internationaux du centre national de la recherche scientifique ParisGoogle Scholar
  14. 14.
    Chang HK, Mackenzie FT, Schoonmaker I (1986) Comparisons between the diagenesis of dioctahedral and trioctahedral smectite, Brazilian Offshore basins. Clays Clay Min 34: 407–423CrossRefGoogle Scholar
  15. 15.
    Churchman G J, Jackson ML (1976) Reaction of montmorillonite with acid aqueous solutions: solute activity control by a secondary phase. Geochim Cosmochim Acta 40: 1251–1259CrossRefGoogle Scholar
  16. 16.
    Correns CW, Engelhardt W von (1938) Neue Untersuchungen über die Verwitterung des Kalifeldspats. Chemie der Erde 12: 1–22Google Scholar
  17. 17.
    Correns CW (1963) Experiments on the decomposition of silicates and discussion of chemical weathering. Clays Clay Min 10: 443–459CrossRefGoogle Scholar
  18. 18.
    Decarreau A (1980) Cristallogenèse experimentale des smectites magnesiennes: hectorite, stevensite. Bull Mineral 103: 579–590Google Scholar
  19. 19.
    Decarreau A (1981) Cristallogenèse à basse temperature des smectites trioctaédrique par viellement de comprecipites silico métallique de formule (Si4−x) M3O10nH2O. C R Acad Sci Paris 292: 61–64Google Scholar
  20. 20.
    Decarreau A (1985) Partitioning of divalent transition elements between octahedral sheets of trioctahedral smectites and water. Geochim Cosmochim Acta 49: 1537–1544CrossRefGoogle Scholar
  21. 21.
    Drever JI (1982) The geochemistry of natural waters. Prentice Hall, Englewood Cliffs, N JGoogle Scholar
  22. 22.
    Eberl DD, Hower I (1976) Kinetics of illite formation. Bull Geol Soc Am 87: 1326–1330CrossRefGoogle Scholar
  23. 23.
    Eberl DD, Hower I (1977) The hydrothermal transformation of sodium and potassium smectite into mixed layer clay. Clays Clay Min 25: 215–228CrossRefGoogle Scholar
  24. 24.
    Eberl DD (1980) Alkali cation selectivity and fixation by clay minerals. Clays Clay Min 28: 161–172CrossRefGoogle Scholar
  25. 25.
    Eberl DD (1984) Clay mineral formation and transformation in rocks and soils. Phil Trans Royal Soc London A 311: 241–257CrossRefGoogle Scholar
  26. 26.
    Engelhardt W von (1960) Der Porenraum der Sedimente. In: von Engelhardt W, Zeemann J (eds) Mineralogie u. Petrographie in Einzeldarstellungen. Springer, Berlin Göttingen Heidel¬bergGoogle Scholar
  27. 27.
    Engelhardt W von (1977) The origin of sedimentary rocks, Part I II. In: v Engelhardt W, Füchtbauer H, Müller G (eds) Sedimentary Petrology. Halstead Press Book Wiley, New YorkGoogle Scholar
  28. 28.
    Fanning DS, Keramidas V Z (1977) Micas in minerals and soil environments. In: Dinauer DC (ed) Soil Science Society of America, Madison USA, pp 195–258Google Scholar
  29. 29.
    Farmer VC, Fraser AR, Tait JM (1979) Characterization of the chemical structures of natural and synthetic aluminosilicate gels and sols by infrared spectroscopy. Geochim Cosmochim Acta 43: 1417–1420CrossRefGoogle Scholar
  30. 30.
    Garrels RM, Christ CL (1965) Solutions, minerals and equilibria. Freemann Cooper a Co, San FranciscoGoogle Scholar
  31. 31.
    Garrels R M (1984) Montmorillonite/illite stability diagrams. Clays Clay Min 32: 161–166CrossRefGoogle Scholar
  32. 32.
    Güven N, Hower WF, Davies DK (1980) Nature of authigene illites in sandstone reservoirs. Sedim Petrology 50: 761–766Google Scholar
  33. 33.
    Güven N (1988) Smectites. In: Bailey SW (ed) Hydrous phyllosilicates, Reviews in Mineralogy, Mineral Soc Amer vol 19. pp 497–552Google Scholar
  34. 34.
    Guthrie GD, Veblen DR (1989) High-resolution transmission electron microscopy of mixed-layer illite/smectite: Computer simulations. Clays Clay Min 37: 1–11CrossRefGoogle Scholar
  35. 35.
    Harder H (1970) Kaolinitsynthese bei niedrigen Temperaturen. Naturwissenschaften 57: 193CrossRefGoogle Scholar
  36. 36.
    Harder H (1972) The role of magnesium in the formation of smectite minerals. Chem Geol 14: 241–253CrossRefGoogle Scholar
  37. 37.
    Harder H (1978) Synthesis of iron-layer silicates under natural conditions. Clays Clay Min 26: 65–72CrossRefGoogle Scholar
  38. 38.
    Helgeson HC, Garrels RM, Mackenzie FT (1969) Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions, II Applications. Geochim Cosmochim Acta 33: 455–481CrossRefGoogle Scholar
  39. 39.
    Hemni T, Wada K (1976) Morphology and composition of allophane. Am Min 61: 379–390Google Scholar
  40. 40.
    Hower J (1961) Some factors concerning the nature and origin of glaukonite. Am Min 46: 313–334Google Scholar
  41. 41.
    Hower J, Eslinger EV, Hower ME, Perry EA (1976) Mechanism of burial metamorphism of argillacious sediment. C. Mineralogical and chemical evidence. Bull Geol Soc Am 87: 725–737CrossRefGoogle Scholar
  42. 42.
    Hurst A, Irvin HI (1982) Geological modelling of clay diagenesis in sandstones. Clay Miner 17: 5–22CrossRefGoogle Scholar
  43. 43.
    Imbert T, Desprairies A (1987) Neoformation of halloysite on vulcanic glass in marine environment. Clay Min 22: 179–185CrossRefGoogle Scholar
  44. 44.
    Inoue A (1987) Conversion of smectite to chlorite by hydrothermal and diagenetic alterations. Hokuroku Kusoko mineralization area, northeast Japan. Proc Intern Clay Conf Denver 1985, 158–164Google Scholar
  45. 45.
    Inoue A, Kokyama N, Kilagawa R, Watanabe T (1987) Chemical and morphological evidence for the conversion of smectite to illite. Clays Clay Min 35: 111–120CrossRefGoogle Scholar
  46. 46.
    Inoue A, Velde B, Meunier A, Touchard G (1988) Mechanism of illite formation during smectite-to-illite conversion in a hydrothermal system. Am Min 73: 1325–1334Google Scholar
  47. 47.
    Inoue A, Utada M (1991) Smectite-to-chlorite transformation in thermally metamorphosed voleanoclastic rocks in the Kamikita area, northern Hanshu, Japan. Am Min 76: 628–640Google Scholar
  48. 48.
    Isphording WC (1973) Discussion of the occurence and origin of sedimentary palygorskite-sepiolite deposites. Clays Clay Min 21: 313–401CrossRefGoogle Scholar
  49. 49.
    Jasmund K, Riedel D (1961) Untersuchungen des tonigen Zwischenmittels im Hauptbuntsandstein der Nordeifel. Bull Geol Inst Upsala, vol XL, pp 247–257Google Scholar
  50. 50.
    Jasmund K, Riedel D, Keddeines H (1969) Neubildung von leistenförmigem Illit und von Dickit bei der Zersetzung des Muskovits in Sandstein. In: Heller L (ed) Proc Intern Clay Conf Tokyo, Japan. Israel Universities Press, Jerusalem, pp 493–500Google Scholar
  51. 51.
    Jasmund K (1991) Von den Tonkolloiden zu den Tonmineralen. In: Tributh H, Lagaly G (Hrsg) Identifizierung und Charakterisierung von Tonmineralen. Deutsche Ton- und Ton- mineralgr, Gießen S 11–17Google Scholar
  52. 52.
    Jeans CV (1971) The neoformation of clay minerals in brackish and marine environments. Clay Min 9: 209–217CrossRefGoogle Scholar
  53. 53.
    Jiang W-T, Essene EJ, Peacor DR (1990) Transmission electron microscopy study of coexisting pyrophyllite and muscovite: direct evidence for the metastability of illite. Clays Clay Min 38: 225–240CrossRefGoogle Scholar
  54. 54.
    Jiang W-T, Peacor DR (1991) Transmission electron microscopic study of the kaolinization of muscovite. Clays Clay Min 39: 1–13CrossRefGoogle Scholar
  55. 55.
    Jones BF, Galan E (1988) Sepiolite and palygorskite. In: Bailey SW (ed) Hydrous phyllosilicates, vol 19, pp 631–667 Reviews in Mineralogy: Mineral Soc AmerGoogle Scholar
  56. 56.
    Johns WD (1979) Clay mineral catalysis and petroleum generation. Am Rev Earth Planetary Sci: 183–198Google Scholar
  57. 57.
    Keller WD (1970) Environmental aspects of clay minerals. J Sedimentary Petrology 40: 788–813Google Scholar
  58. 58.
    Kittrick JA (1966) Free energy of formation of kaolinite from solubility. Am Min 51: 1457–1466Google Scholar
  59. 59.
    Kittrick JA (1970) Precipitation of kaolinite at 25 °C and 1 atm. Clays Clay Min 18: 261–268CrossRefGoogle Scholar
  60. 60.
    Kittrick JA (1973) Mica-derived vermiculites as unstable intermediates. Clays Clay Min 21: 479–488CrossRefGoogle Scholar
  61. 61.
    Kittrick JA (1984) Stability measurements of phases in three illites. Clays Clay Min 33: 115–124CrossRefGoogle Scholar
  62. 62.
    Kohler EE, Köster HM (1976) Zur Mineralogie, Kirstallchemie und Geochemie kretazischer Glaukonite. Clay Min 11: 273–302CrossRefGoogle Scholar
  63. 63.
    Kübler B (1973) La corrensite, indicateur possible de milieux de sedimentation et du degrée de transformation d’un sediment. Bull Centre Rech Pau SNPA 7: 543–556Google Scholar
  64. 64.
    La Iglesia A, Oosterwyck-Gastuche MC van (1978) Kaolinite synthesis I. Crystallization conditions at low temperatures and calculation of thermodynamic equilibria. Application to laboratory and field observations. Clays Clay Min 26: 397–408CrossRefGoogle Scholar
  65. 65.
    Lanson B, Champion D (1991) The I/S-to-illite reaction in the late stage diagenesis. Am J Sci 291: 473–506CrossRefGoogle Scholar
  66. 66.
    Linares J, Huertas F (1971) Kaolinite: Synthesis at room temperature. Science 171: 896–897CrossRefGoogle Scholar
  67. 67.
    Lippmann F (1977) The solubility products of complex minerals, mixed crystals and three-layer clay minerals. N Jb Min Abh 130: 243–263Google Scholar
  68. 68.
    Lippmann F (1979) Stabilitätsbeziehungen der Tonminerale. N Jb Min Abh 136: 287–309Google Scholar
  69. 69.
    Lippmann F (1982) The thermodynamic status of clay minerals. In: Olphen H van, f Veniak, (eds) Proc 7. Intern Clay Conf Bologna, Pavia, 1981 Elsevier, Amsterdam pp 475–485Google Scholar
  70. 70.
    Magara K (1975) Réévaluation of montmorillonite dehydration as cause of abnormal pressure and hydrocarbon migration. Am Assoc Petrol Geol Bull 5: 292–302Google Scholar
  71. 71.
    May HM, Kinniburgh DG, Helmke PA, Jackson ML (1986) Aqueous dissolution, solubilities and thermodynamic stabilities of common aluminosilieate clay minerals: kaolinite and smectites. Geochim Cosmochim Acta 50: 1667–1677CrossRefGoogle Scholar
  72. 72.
    Merino E, Ramson B (1982) Free energies of formation of illite solid solutions and their compositional dependence. Clays Clay Min 30: 29–39CrossRefGoogle Scholar
  73. 73.
    Millot G (1970) Geology of clays. Springer, New York Heidelberg BerlinGoogle Scholar
  74. 74.
    Mosser Ch (1974) Illites en lattes, illites pseudohexagonales, processus de formation: Experimentation. Clay Min 10: 145–151CrossRefGoogle Scholar
  75. 75.
    Müller G (1961) Die rezenten Sedimente im Golf von Neapel 2. Mineralneu- und Umbildungen in den rezenten Tuf fiten des Golfes von Neapel. Ein Beitrag zur Umwandlung vulkanischer Gläser durch Halmyrolyse. Beitr Min Petrogr: 1–20Google Scholar
  76. 76.
    Nadeau PH, Wilson MJ, McHardy WJ, Tait JM (1984) Interparticle diffration: A new concept for interstratified clays. Clay Min 19: 757–769CrossRefGoogle Scholar
  77. 77.
    Nadeau PH, Wilson MJ, McHardy WJ, Tait JM (1984) Interstratified XRD characteristics of physical mixtures of elementary clay particles. Clay Min 19: 67–76CrossRefGoogle Scholar
  78. 78.
    Nadeau P H, Wilson M J, McHardy W J, Tait J M (1985) The conversion of smectite to illite during diagenesis: Evidence from some illite clays from betonites and sandstones. Min Mag 49: 393–400CrossRefGoogle Scholar
  79. 79.
    Nagy KL, Blum AE, Lasga AC (1991) Dissolution and precipitation kinetics of kaolinite at 80 °C and pH 3: The dependence on solution saturation state. Am J Sci 291: 649–686CrossRefGoogle Scholar
  80. 80.
    Noll W (1934) Hydrothermale Synthese des Kaolins. Mineral Petrogr Mitt, 45: 175–190Google Scholar
  81. 81.
    Noll W (1936) Synthese von Montmorilloniten. Chem Erde 10: 129–154Google Scholar
  82. 82.
    Norin E (1953) Occurrence of authigenic illitic mica in the sediments of the central Tyrrhenian Sea. Bull Geol Inst Univ Uppsala 34: 239Google Scholar
  83. 83.
    Norrish K (1972) Factors in the weathering of mica to vermiculite. In: Serratosa JM (ed) Proc Intern Clay Conf Madrid, 1972. Div Ciencias CSIC, pp 419–432Google Scholar
  84. 84.
    Oosterwyck-Gastuche MC van, La Iglesia A (1978) Kaolinite synthesis II. Review and discussion of the factors influencing the rate process. Clays Clay Min 26: 409–417CrossRefGoogle Scholar
  85. 85.
    Parham WE (1969) Halloysite-rich tropical weathering products of Hongkong. In: Heller L (ed) Proc Intern Clay Conf Tokyo, Japan, 1969. Israel Universities Press, Jerusalem, pp 403–416Google Scholar
  86. 86.
    Perry E, Hower I (1970) Burial diagenesis in Gulf coast pelitic sediments. Clays Clay Min 18: 165–177CrossRefGoogle Scholar
  87. 87.
    Perry E, Hower J (1972) Late-stage dehydration in deeply buried pelitic sediments. Bull Am Ass Petrol Geol 56: 2013–2021Google Scholar
  88. 88.
    Powell TG, Foscolos AE, Gunther PR, Snowden LR (1978) Diagenesis of organic matter and fine clay minerals: a comparative study. Geochim Cosmochim Acta 42: 1181–1197CrossRefGoogle Scholar
  89. 89.
    Rex RW (1965) Authigenic kaolinite and mica as evidence for phase equilibria at low temperatures. Clays Clay Min 13: 95–104CrossRefGoogle Scholar
  90. 90.
    Reynolds RC (1980) Interstratified clay minerals. In: Brindley G W, Brown G (eds) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society London, 249–304Google Scholar
  91. 91.
    Roberson HE (1974) Early diagenesis: Expansible soil clay-sea water reactions. J Sedim Petrol 44: 441–449Google Scholar
  92. 92.
    Robert M (1973) The experimental transformation of mica toward smectite; relative importance of total charge and tetrahedral substitution. Clays Clay Min 21: 167–174CrossRefGoogle Scholar
  93. 93.
    Rosenberg PE, Kittrick J A, Sass BM (1985) Implications of illite/smectite stability diagrams: A discussion. Clays Clay Min 33: 561–562CrossRefGoogle Scholar
  94. 94.
    Russel KL (1970) Geochemistry and halmyrolysis of clay minerals, Rio Ameca, Mexico. Geochim Cosmochim Acta 34: 893–907CrossRefGoogle Scholar
  95. 95.
    Sayles FL, Mangelsdorf PC (1977) The equilibration of clay minerals with seawater: exchange reactions. Geochim Cosmochim Acta 41: 951–960CrossRefGoogle Scholar
  96. 96.
    Sayles FL, Mangelsdorf PC (1979) Cation-exchange charactericties of Amazon river suspended sediment and its reaction with seawater. Geochim Cosmochim Acta 43: 767–779CrossRefGoogle Scholar
  97. 97.
    Siffermann G, Millot G (1969) Equatorial and tropical weathering of recent basalts from Cameron: Allophanes, halloysite, metahalloysite, kaolinite and gibbsite. In: Heller L (ed) Proc Intern Clay Conf, Tokyo, Japan, vol I., Isreael Universities Press, Jerusalem, pp 417–430Google Scholar
  98. 98.
    Siffert B (1962) Quelques réactions de la silice en solution: La formation des argiles. Mém Serv Carte Geol Alsace Lorraine 21, 86Google Scholar
  99. 99.
    Siffert B, Wey R (1962) Synthèse d’une sepiolite à temperature ordinaire. C R Acad Sci Paris 254: 1460–1463Google Scholar
  100. 100.
    Singer A (1979) Palygorskite in sediments: Detritical, diagenentic or neoformed. A critical review. Geolog Rundschau 68: 996–1008CrossRefGoogle Scholar
  101. 101.
    Singer A, Müller G (1983) Diagenesis in argillaeaous sediments. In: Larsen G, Chilinger GV (eds) Diagenesis in Sediments and Sedimentary Rocks. Elsevier, AmsterdamGoogle Scholar
  102. 102.
    Steefel GI, Capellen P van (1999) A new kinetic approach to modeling water-rock interaction: The role of nucleation, precursors, and Ostwald-ripening. Geochim Cosmochim Acta 54: 2657–2677CrossRefGoogle Scholar
  103. 103.
    Stoessel RK (1979) A regular solution site-mixing model for illites. Geochim Cosmochim Acta 43: 1151–1159CrossRefGoogle Scholar
  104. 104.
    Stoessel RK (1981) Refinements in a site-mixing model for illites: Local electrostatic balance and the quasi-chemical approximation. Geochim Cosmochim Acta 45: 1733–1741CrossRefGoogle Scholar
  105. 105.
    Strese H, Hofmann U (1941) Synthesis of magnesium silicate gels with twodimensionl regular structures. Z Anorg Allgem Chem 247: 65–95CrossRefGoogle Scholar
  106. 106.
    Surdam RC, Crossley LJ (1985) Organic inorganic reactions during progressive burial: key to porosity and permeability enhancement and preservation. Phil Trans Roy Soc London A 315: 135–156CrossRefGoogle Scholar
  107. 107.
    Tazaki K (1986) Observation of primitive clay, presurors during microcline weathering. Contrib Mineral Petrol 92: 86–88CrossRefGoogle Scholar
  108. 108.
    Tazaki K, Fyfe WS, van der Gaast (1989) Growth of clay minerals in natural and synthetic glasses. Clay Clay Min 37: 348–354CrossRefGoogle Scholar
  109. 109.
    Thomassin JH, Crovissier JL, Touray JC, Juteau T, Boutonnat F (1985) L’apport de la géochimie experimentale à la compréhension des interactions eau de mer-verre basaltique entre 3 °C et 90 °C, données de l’analyse ESCA, de la microscopie et de la microdiffraction électronique. Bull Sov Geol France 8: 217–222Google Scholar
  110. 110.
    Truesdell A H, Christ C L (1968) Cation exchange in clays interpreted by regular solution theory. Am J Sci 266: 402–412CrossRefGoogle Scholar
  111. 111.
    Tsuzuki Y, Kawabe I (1983) Polymorphe transformations of kaolin minerals in aqueous solutions. Geochim Cosmochim Acta 47: 59–66CrossRefGoogle Scholar
  112. 112.
    Veblen DR, Guthrie GD, Livi KJT, Reynolds RC (1990) High-resolution transmission electron microscopy and electron diffraction of mixed-layer illite/smectite: Experimental results. Clays Clay Min 38: 1–13CrossRefGoogle Scholar
  113. 113.
    Velde B (1977) Clays and clay minerals in natural and synthetic systems in: Developments in Sedimentology 21. Elsevier, Amsterdam Oxford New YorkGoogle Scholar
  114. 114.
    Wada SI, Wada K (1979) Synthetic allophane and imogolite. J Soil Sci 30: 347–355CrossRefGoogle Scholar
  115. 115.
    Wada SI, Wada K (1980) Formation, composition and structure of hydroxoaluminiumsilicate ions. J Soil Sci 31: 457–467CrossRefGoogle Scholar
  116. 116.
    Weaver CE, Pollard LD (1973) The chemistry of clay minerals. Elsevier, Amsterdam New York LondonGoogle Scholar
  117. 117.
    Williams LB, Ferrel RE, Chinn EW, Sassen R (1989) Fixed-ammonium in clays associated with crude oils. Appl Geochem 4: 605–616CrossRefGoogle Scholar
  118. 118.
    Williams LB, Ferrel RE (1991) Ammonium substitution in illite during maturation of organic matter. Clays Clay Min 39: 400–408CrossRefGoogle Scholar
  119. 119.
    Wilson MD, Pttmann ED (1977) Authigenic clays in sandstones: Recognition and influence on reservoir properties and paleoenvironmental analysis. J Sediment Petrology 47: 3–31Google Scholar
  120. 120.
    Wollast R, MacKenzie FT, Bricker OP (1968) Experimental precipitation and genesis of sepiolite at earth surface conditions. Am Min 53: 1645–1662Google Scholar
  121. 121.
    Yariv S, Cross H (1979) Geochemistry of colloid systems for earth scientists. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  122. 122.
    Yau Y-C, Peacor DR, Essene EJ, Lee JH, Kuo L-C, Cosca MA (1987) Hydrothermal treatment of smectite, illite and basalt to 460 °C: comparision of natural with hydrothermally formed clay minerals. Clays Clay Min 35: 241–250CrossRefGoogle Scholar
  123. 123.
    Yau Y-C, Peacor DR, Bearre E, Essene EJ, McDowell SD (1988) Microstructures, formation mechanisms and depth-zoning of phyllosilicates in geothermally altered shales, Salton Sea, California. Clays Clay Min 36: 1–10CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag, GmbH & Co. KG Darmstadt 1993

Authors and Affiliations

  • K. Jasmund

There are no affiliations available

Personalised recommendations