Advertisement

Beschreibung Einzelner Tonminerale

  • H. M. Köster
  • U. Schwertmann
Chapter

Zusammenfassung

Der Strukturtyp der Zweischichtminerale wird vertreten durch die dioktaedrischen Aluminiumminerale der Kaolingruppe und die trioktaedrischen Magnesiumminerale der Serpentingruppe.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Ahn JH, Peacor DR, Coombs DS (1988) Formation mechanisms of illite, chlorite and mixed-layer illite-chlorite in Triassic volcanogenic sediments from the Southland syncline, New Zealand. Contrib Mineral Petrol 99: 82–89Google Scholar
  2. 2.
    Alietti A (1958) Some interstratified clay minerals of the Taro Valley. Clay Miner Bull 3: 207–211Google Scholar
  3. 3.
    Bailey SW (1988) Chlorites: Structures and crystal chemistry. In: Bailey SW (ed) Hydrous phyllosilicates (exclusive of micas). Reviews in Mineralogy, vol 19. Mineralogical Society of America, pp 347–403Google Scholar
  4. 4.
    Bailey SW, ed (1984) Micas. Reviews in Mineralogy, vol 13. Mineralogical Society of AmericaGoogle Scholar
  5. 5.
    Bailey SW (1982) Nomenclature for regular inter stratifications. Am Min 67: 394–398Google Scholar
  6. 6.
    Bailey SW (1980) Comment. Summary of recommendations of AIPEA nomenclature committee. Clays Clay Min 28: 73–78Google Scholar
  7. 7.
    Bailey SW (1980) Structures of layer silicates. In: Brindley GW, Brown G (eds) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society, London, pp 1–124Google Scholar
  8. 8.
    Bailey SW (1969) Polytypism of trioctahedral 1:1 layer silicates. Clays Clay Min 17: 355–371Google Scholar
  9. 9.
    Bailey SW (1963) The polymorphism of kaolin minerals. Am Min 48: 1196–1209Google Scholar
  10. 10.
    Bailey SW, Brown BE (1962) Chlorite polytypism: Regular and semi-random one-layer structures. Am Min 47: 819–850Google Scholar
  11. 11.
    Barshad I (1948) Vermiculite and its relation to biotite as revealed by base exchange reactions, X-ray analysis, differential thermal curves and water content. Am Min 33: 655–678Google Scholar
  12. 12.
    Barshad I, Kishk FM (1969) Chemical composition of soil vermiculite clays as related to their genesis. Contrib Mineral Petrol 24: 236–155Google Scholar
  13. 13.
    Basset WA (1963) The geology of vermiculite occurrences. Clays Clay Min 10: 61–69Google Scholar
  14. 14.
    Bates TF (1958) Selected electron micrographs of clays. Circular no 51. Mineral Industries Experiment Station, State University Pennsylvania.Google Scholar
  15. 15.
    Ben Rhaiem H, Tessier D, Pons CH (1986) Comportement hydrique et évolution structurale et texturale des montmorillonites au cours d’un cycle de dessiccation-humectation: I. Cas des montmorillonites calciques. Clay Min 21: 9–29Google Scholar
  16. 16.
    Biedl A, Preisinger A (1963) Die Struktur des Loughlinit (Natrium-Sepiolith). Fortschr Miner 40: 550–51Google Scholar
  17. 17.
    Bigham JM, Jaynes WT, Allen BL (1980) Pedogenic alteration of sepiolite and palygorskite on the Texas High Plains. Soil Sci Soc Am J 44: 159–167Google Scholar
  18. 18.
    Biscaye PE (1964) Distinction between kaolinite and chlorite in recent sediments by X-ray diffraction. Am Min 49: 1281–1289Google Scholar
  19. 19.
    Bish DL, Dreele R Von (1988) Rietfeld refinement of the crystal structure of kaolinite. Annual Meeting of the Clay Minerals Society, East Lansing, Michigan (Abstr.)Google Scholar
  20. 20.
    Black PM (1975) Mineralogy of New Caledonian metamorphic rocks: IV. Sheet silicates from the Quégoa district. Contrib Miner Petrogr 49: 269–284Google Scholar
  21. 21.
    Blatter CL, Roberson HE, Thompson GR (1973) Regularity interstratified chlorite-dioetahedral smectite in dike-intruded shales, Montana. Clays Clay Min 21: 207–212Google Scholar
  22. 22.
    Blount AM, Threadgold IM, Bailey SW (1969) Refinement of the crystal structure of nacrite. Clays Clay Min 17: 185–194Google Scholar
  23. 23.
    Bowles FA, Angino EA, Hosterman JW, Galle OK (1971) Precipitation of deep sea palygorskite and sepiolite. Earth Planet Sci Lett 11: 324–332Google Scholar
  24. 24.
    Bradley WF (1954) X-ray diffraction criteria for the characterization of chloritic material in sediments. Clays Clay Min 2: 324–334Google Scholar
  25. 25.
    Bradley WF (1950) The alternating layer sequence of rectorite. Am Min 35: 590–595Google Scholar
  26. 26.
    Bradley WF (1945) Diagnostic criteria for clay minerals. Am Min 30: 704–713Google Scholar
  27. 27.
    Bradley WF (1940) The structural scheme of attapulgite. Am Min 25: 405–410Google Scholar
  28. 28.
    Bradley WF, Weaver CE (1956) A regularly interstratified chlorite-vermiculite mineral. Am Min 41: 497–504Google Scholar
  29. 29.
    Brauner K, Preisinger A (1956) Struktur und Entstehung des Sepioliths. Tschermaks Miner Petrogr Mitt 6: 120–140Google Scholar
  30. 30.
    Brigatti MF, Poppi L (1984) ‘Corrensite-like minerals‘in the Taro and Ceno valleys, Italy. Clay Min 19: 59–66Google Scholar
  31. 31.
    Brindley GW (1980) Structures of layer silicates. In: Brindley GW, Brown G (eds) Crystal structure of clay minerals and their X-ray identification. Mineralogical Society London 1980Google Scholar
  32. 32.
    Brindley GW (1959) X-ray and electron diffraction data for sepiolite. Am Min 44: 495–500Google Scholar
  33. 33.
    Brindley GW (1955) Stevensite, a montmorillonite-type mineral showing mixed-layer characteristics. Am Min 40: 239–247Google Scholar
  34. 34.
    Brindley GW (1951) The crystal structure of some chamosite minerals. Mineralog Mag 29: 502–525Google Scholar
  35. 35.
    Brindley GW, Ali SZ (1950) X-ray study of thermal transformations in some magnesian chlorite minerals. Acta Crystallogr 3: 25–30Google Scholar
  36. 36.
    Brindley GW, Brown G, (1980) (eds) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society London 1980Google Scholar
  37. 37.
    Brindley GW, Pedro G (1970) Report of the AIPEA nomenclature committee. AIPEA Newsletter 7: 8–13Google Scholar
  38. 38.
    Brindley GW, Porter ARD (1978) Occurence of dickite in Jamaica - ordered and disordered varieties. Am Min 63: 554–562Google Scholar
  39. 39.
    Brindley GW, Robinson K (1948) Metahalloysite. Mineralog Mag 28: 393–407Google Scholar
  40. 40.
    Brindley GW, Robinson K (1946) The structure of kaolinite. Mineralog Mag 27: 242–253Google Scholar
  41. 41.
    Brindley GW, Santos de Souza P, Santos de Souza H (1963) Mineralogical studies of kaolinitehalloysite clays. I. Identification problems. Am Min 48: 897–910Google Scholar
  42. 42.
    Brindley GW, Wardle R (1970) Monoclinic and triclinic forms of pyrophyllite and pyrophyllite anhydrite. Am Min 55: 1259–1272Google Scholar
  43. 43.
    Brown G (1980) Associated minerals. In: Brindley GW, Brown G (eds) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society London, pp 361–410Google Scholar
  44. 44.
    Brown G (1955) Report of the clay minerals group subcommittee on nomenclature of clay minerals. Clay Miner Bull 2: 294–302Google Scholar
  45. 45.
    Brown G (1953) The dioctahedral analogue of vermiculite. Clay Minerals Bull 2: 64–70Google Scholar
  46. 46.
    Brown G, Weir AH (1963) The identity of rectorite and allevardite. Proc Int Clay Conf 1963 Stockholm 1: 27–35Google Scholar
  47. 47.
    Buckley HA, Bevan JC, Brown KM, Johnson LR (1978) Glauconite and celadonite: two separate mineral species. Mineralog Mag 42: 373–382Google Scholar
  48. 48.
    Bystrôm Brusewitz AM (1975) Studies on the Li test to distinguish between beidellite and montmorillonite. Proc Int Clay Conf, Mexico 1975. Applied Publishing, Wilmette, Illinois, USA, pp 419–428Google Scholar
  49. 49.
    Cahoon HP (1954) Saponite near Milford, Utah. Am Min 39: 222–230Google Scholar
  50. 50.
    Caillère S, Hénin S (1957) The chlorite and serpentine minerals. In: Mackenzie RC (ed) The differential thermal investigation of clays. Mineralogical Society London 1957, pp 207–230Google Scholar
  51. 51.
    Caillère S, Hénin S (1957) The sepiolite and palygorskite minerals. In: Mackenzie RC (ed) The differential thermal investigation of clays. Mineralogical Society, London, pp 231–247Google Scholar
  52. 52.
    Caillère S, Hénin S, Pobeguin T (1962) Présence d’un nouveau type de chlorite dans les bauxites de Saint Paul-de-Fenouillet (Pyrenees-Orientales). C r hebd Séanc Acad Sci Paris 254: 1657–1658Google Scholar
  53. 53.
    Caillère S, Mathieux-Sicaud A, Hénin S (1950) Nouvel essai d’identification du minéral de La Table près l’allevardite. Bull Soc fr Minér Cristallogr 73: 193–201Google Scholar
  54. 54.
    Callen RA (1984) Clays of the palygorskite-sepiolite group: Depositional environment, age and distribution. In: Singer A, Galan E (eds) Palygorskite-sepiolite. Occurences, genesis and uses. Developments in Sedimentology 37: 1–37. Elsevier, AmsterdamGoogle Scholar
  55. 55.
    Cannings FR (1968) An infrared study of hydroxyl groups on sepiolite. J phys Chem 72: 1072–1074Google Scholar
  56. 56.
    Cardile CM (1989) Tetrahedral iron in smectite: A critical commentary. Clays Clay Min 37: 185–188Google Scholar
  57. 57.
    Cardile CM, Johnston JH (1985) Structural studies of nontronites with different iron contents by 57Fe Môssbauer spectroscopy. Clays Clay Min 33: 295–300Google Scholar
  58. 58.
    Cerny P (1970) Compositional variation in cookeite. Can Min 10: 636–647Google Scholar
  59. 59.
    Christ CL, Hathaway JC, Hostetler PB, Shepard AO (1969) Palygorskite: new x-ray data. Am Min 54: 198–205Google Scholar
  60. 60.
    Chukrov FV, Zvyagin BB (1966) Halloysite, a crystallo-chemically and mineralogically distinct species. Proc Int Clay Conf 1966 Jerusalem 1: 11–25Google Scholar
  61. 61.
    Churchman GJ, Theng BKG (1984) Interactions of halloysites with amides: mineralogical factors affecting complex formation. Clay Min 19: 161–175Google Scholar
  62. 62.
    Churchman GJ, Whitton JS, Claridge GGC, Theng BKG (1984) Intercalation method using formamide for differentiating halloysite from kaolinite. Clays Clay Min 32: 241–248Google Scholar
  63. 63.
    Coleman NT, LeRoux FH, Cady JG (1963) Biotite-hydrobiotite-vermiculite in soils. Nature 198: 409–410Google Scholar
  64. 64.
    Correns CW, Mehmel M (1936) Über den optischen und röntgenographischen Nachweis von Kaolinit, Halloysit und Montmorillonit. Z Kristallogr (A) 94: 337–348; S 699–780Google Scholar
  65. 65.
    Correns CW, Piller H (1955) Mikroskopie der feinkörnigen Silikate. In: Freund H (Hrsg) Handbuch der Mikroskopie in der Technik, Bd IV, Teil 1 „Gesteine“. Umschau FrankfurtGoogle Scholar
  66. 66.
    Couture RA (1977) Composition and origin of palygorskite-rich and montmorillonite-rich zeolite-containing sediments from the Pacific Ocean. Chem Geol 19: 113–130Google Scholar
  67. 67.
    Cowley JM (1961) Diffraction intensities from bent crystals. Acta crystallogr 14: 920–927Google Scholar
  68. 68.
    De la Calle C, Dubernat J, Suquet H, Pezerat H, Gaultier JP, Mamy J (1976) Crystal structure of two layer Mg-vermiculites and Na, Ca-vermiculites. In: Bailey SW (ed) Proc Int Clay Conf, Mexico 1975. Applied Publishing, Wilmette, Illinois, USA, pp 201–209Google Scholar
  69. 69.
    De la Calle C, Plançon A, Pons CH, Dubernat J, Suquet H, Pezerat H (1984) Mode d’empilement des feuillets dans la vermiculite sodique hydratée à une couche (phase à 11.85 Å). Clay Min 19: 563–578Google Scholar
  70. 70.
    De la Calle C, Suquet H, Pons CH (1988) Stacking order in a 14.30-Å Mg-Vermiculite. Clays Clay Min 36: 481–490Google Scholar
  71. 71.
    Dolcater DL, Syers JK, Jackson ML (1970) Titanium as free oxide and substituted in kaolinite and other soil minerals. Clays Clay Min 18: 71–79Google Scholar
  72. 72.
    Douglas LA (1989) Vermiculites. In: Minerals in Soil Environments, 2nd edn. Soil Science Society of America, Madison, Wisconsin, USA, pp 635–674Google Scholar
  73. 73.
    Douglas LA (1985) Criteria for vermiculitic and chloritic family classes in soil taxonomy. In: Kittrick JA (ed) Mineral classification of soils. Soil Society of America, Madison, Wisconsin. Spec Publ 16, pp 161–167Google Scholar
  74. 74.
    Drees LR, Wildung LP, Smeck NE, Senkayi AL (1989) Silica in Soils: Quartz and disordered silica polymorphs. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Sci Soc of America, Madison, Wisonsin, USA, pp 913–974Google Scholar
  75. 75.
    Drits VA, Sokolova GV (1971) Structure of palygorskite. Soviet Phys Crystallogr 16: 183–185Google Scholar
  76. 76.
    Droste JB, Vitaliano CJ (1973) Tioga bentonite (middle Devonian) of Indiana. Clays Clay Min 21: 9–13Google Scholar
  77. 77.
    Earley JW, Brindley GW, McVeach WJ, Vanden-Heuvel RC (1956) A regulary interstratified montmorillonite-ehlorite. Am Min 41: 258–267Google Scholar
  78. 78.
    Earley JW, Osthaus BB, Milne IH (1953) Purification and properties of montmorillonite. Am Min 38: 707–724Google Scholar
  79. 79.
    Eberl D (1978) Reaction series for dioctahedral smectites. Clays Clay Min 26: 327–340Google Scholar
  80. 80.
    Echle W (1978) The transformations sepiolite - loughlinite: experiments and field observations. N Jb Miner Abh 133: 303–321Google Scholar
  81. 81.
    Evans BW, Misch P (1976) A quartz-aragonite-talc schist from the lower Skagit Valley, Washington. Am Min 61: 1005–1008Google Scholar
  82. 82.
    Fahey JJ, Ross M, Axelrod DJ (1960) Loughlinite, a new hydrous sodium magnesium silicate. Am Min 45: 270–281Google Scholar
  83. 83.
    Farmer VC (1974) The layer silicates. In: Farmer VC (ed) The infrared spectra of minerals. Mineralogical Society, London, pp 331–364Google Scholar
  84. 84.
    Farmer VC, Rüssel JD (1967) Infrared absorption spectrometry in clay studies. Clays Clay Min 15: 121–142Google Scholar
  85. 85.
    Farmer VC, Russel JD (1964) The infrared spectra of layer silicates. Spectrochim Acta 20: 1149–1173Google Scholar
  86. 86.
    Fleischer P (1972) Sepiolite associated with Miocene diatomite, Santa Cruz Basin, California. Am Min 57: 903–913Google Scholar
  87. 87.
    Foord EF, Starkey HC, Taggart jr JE, Shawe DR (1987) Reassessment of the volkonskoite-chromium smectite nomenclature problem. Clays Clay Min 35: 139–149Google Scholar
  88. 88.
    Foster MD (1963) Interpretation of the composition of vermiculites and hydrobiotites. Clays Clay Min 10: 70–89Google Scholar
  89. 89.
    Foster MD (1953) Geochemieal studies of clay minerals: II. Relation between ionic substitution and swelling in montmorillonites. Am Min 38: 994–1006Google Scholar
  90. 90.
    Freund F (1972) The defect structure of metakaolinite. Proc Int Clay Conf 1972 Madrid, pp 13–25Google Scholar
  91. 91.
    Freund F (1967) Kaolinite-metakaolinite: a model structure for high defect concentrations. Berichte dtsch keram Ges 44: 5–17Google Scholar
  92. 92.
    Fripiat J J (1981) Application of far infrared spectroscopy to the study of clay minerals and zeolites. In: Fripiat JJ (ed) Advanced techniques for clay mineral analysis. Elsevier, Amsterdam Oxford New York, pp 191–210Google Scholar
  93. 93.
    Galan E, Brell JM, La Iglesia A, Robertson RHS (1975) The Cáceres palygorskite deposit, Spain. Proc Int Clay Conf 1975 Mexico, pp 81–94Google Scholar
  94. 94.
    Gard JA, Follett EAC (1968) A structural scheme for palygorskite. Clay Min 7: 367–370Google Scholar
  95. 95.
    Garret WG, Walker GF (1959) The cation-exchange capacity of hydrated halloysite and the formation of halloysite-salt complexes. Clay Min Bull 4: 75–80Google Scholar
  96. 96.
    Gaudette HE (1964) Magnesium vermiculite from the Twin Sisters Mountains, Washington. Am Min 49: 1754–1763Google Scholar
  97. 97.
    Giese jr RF (1975) Interlayer bonding in talc and pyrophyllite. Clays Clay Min 23: 165–166Google Scholar
  98. 98.
    Giovanoli R (1987) Manganese oxide minerals. Trans 134. Congr Int Soil Sci Soc Hamburg 5: 335–345Google Scholar
  99. 99.
    Greene-Kelly R (1955) Dehydration of montmorillonite minerals. Mineralog Mag 30: 604–615Google Scholar
  100. 100.
    Grim RE, Bray RH, Bradley WF (1937) The mica in argillaceous sediments. Am Min 22: 813–829Google Scholar
  101. 101.
    Grim RE, Güven N (1978) Bentonites. Geology, Mineralogy, Properties and Uses. Developments in Sedimentology, no 24. Elsevier Amsterdam Oxford New YorkGoogle Scholar
  102. 102.
    Grim RE, Kulbicki G (1961) Montmorillonite: high temperature reactions and classification. Am Min 46: 1329–1369Google Scholar
  103. 103.
    Gruner JW (1935) The structural relationship of glauconite and mica. Am Min 20: 699–714Google Scholar
  104. 104.
    Gruner JW (1934) The structure of vermiculites and their collapse by dehydration. Am Min 19: 557–578Google Scholar
  105. 105.
    Güven N, Hower WF (1979) A vanadium smectite. Clay Min 14: 241–245Google Scholar
  106. 106.
    Harward ME, Brindley GW (1964) Swelling properties of synthetic smectites in relation to lattice substitution. Clays Clay Min 16: 437–447Google Scholar
  107. 107.
    Hashimoto I, Jackson ML (1960) Rapid dissolution of allophane and kaolinite-halloysite after dehydration. Clays Clay Min 7: 102–113Google Scholar
  108. 108.
    Hayashi H, Otsuka R, Imai N (1969) Infrared study of sepiolite and palygorskite on heating. Am Min 54: 1613–1624Google Scholar
  109. 109.
    Hayes JB (1963) Kaolinite from Warsaw geodes, Keokuk region, Iowa. Proc Iowa Acad Sci 70: 261–272Google Scholar
  110. 110.
    Hendricks SB (1938) The crystal structure of the clay minerals dickite, halloysite, and hydrated halloysite. Am Min 23: 295–301Google Scholar
  111. 111.
    Hendricks SB, Jefferson ME (1938) Structures of kaolin and talc-pyrophyllite hydrates and their bearing on water sorption of the clays. Am Min 23: 863–875Google Scholar
  112. 112.
    Hendricks SB, Teller E (1942) X-ray interference in partially ordered layer silicates. J chem Phys 10: 147–167Google Scholar
  113. 113.
    Hénin S, Caillère S (1975) Fibrous minerals. In: Gieseking JE (ed) Soil components. Springer, BerlinGoogle Scholar
  114. 114.
    Henmi T, Wada K (1967) Morphology and composition of allophane. Am Min 61: 379–390Google Scholar
  115. 115.
    Herbillon AJ, Mestdagh MM, Vielvoye L, Derouane EG (1976) Iron in kaolinite with special reference to kaolinite from tropical soils. Clay Minerals 11: 201–220Google Scholar
  116. 116.
    Hilz M (1979) Die Spurenelemente in Kaolinen, kaolinitischen Tonen und Bentoniten - ihr Verhalten bei Ionenumtauschreaktionen und gegen Säuren. Dissertation TU MünchenGoogle Scholar
  117. 117.
    Hinckley DN (1963) Variability in „crystallinity“values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clays Clay Min 11: 229–235Google Scholar
  118. 118.
    Hirst DM (1962) The geochemistry of modern sediments from the Gulf of Paria - II. The location and distribution of trace elements. Geochim cosmochim Acta 26: 1147–1187Google Scholar
  119. 119.
    Holdridge DA, Vaughan F (1957) The kaolin minerals (Kandides). In: Mackenzie RC (ed) Differential thermal investigation of clays. Mineralogical Society, London, pp 98–139Google Scholar
  120. 120.
    Horn MK, Adams JAS (1966) Computer-derived geochemical balances and element abundances. Geochim cosmochim Acta 30: 279–297Google Scholar
  121. 121.
    Horton RB, Johns WD, Kurzweil H (1985) Illite diagenesis in the Vienna Basin, Austria. Tschermaks Min Petr Mitt 34: 239–260Google Scholar
  122. 122.
    Hower J, Mowatt TC (1966) The mineralogy of illites and mixed-layer illite/montmorillonites. Am Min 51: 825–854Google Scholar
  123. 123.
    Hsu PH (1989) Aluminium oxides and oxyhydroxides. In: Dixon JB, Weeds SB (eds) Minerals in soil environments. Soil Sci Soc of America, Madison, Wisconsin, USA, pp 331–378Google Scholar
  124. 124.
    Hughes JC, Brown G (1979) A crystallinity index for soil kaolins and its relation to parent rock, climate and soil maturity. J Soil Sci 30: 557–563Google Scholar
  125. 125.
    Hurley PM, Cormier AF, Hower J, Fairbairn HW, Pinson jr WH (1960) Reliability of glauconite for age measurement by K-Ar and Rb-Sr methods. Bull Am Ass Petrol Geol 44: 1793–1808Google Scholar
  126. 126.
    Iwao S, Udagawa S (1969) Pyrophyllite and “Roseki“clays. In: The Clays of Japan, pp 71–88. Geological Survey of Japan 1969.Google Scholar
  127. 127.
    Jepson WB, Rowse JB (1975) The composition of kaolinite - an electron microscope microprobe study. Clays Clay Min 23: 310–317Google Scholar
  128. 128.
    Jones AA (1981) Charges on the surfaces of two chlorites. Clay Miner 16: 347–359Google Scholar
  129. 129.
    Jones BF, Galan E (1988) Sepiolite and palygorskite. In: Bailey SW (ed) Hydrous phyllosilicates. Reviews in Mineralogy 19: 631–674. Mineralogical Society of America.Google Scholar
  130. 130.
    Joswig W, Drits VA (1986) The orientation of hydroxyl groups in dickite by x-ray diffraction. N Jb Mineral Mh, H1: 19–22Google Scholar
  131. 131.
    Kautz K (1964) Sedimentpetrographische Untersuchung zur Diagenese in Sandsteinen der marinen Unterkreide Norddeutschlands. Beitr Mineral Petrogr 9: 423–461Google Scholar
  132. 132.
    Keller WD, Pickett EE, Reesman AL (1966) Elevated dehydroxylation temperature of Keokuk geode kaolinite. Proc Int Clay Conf 1966 Jerusalem 1: 75–85Google Scholar
  133. 133.
    Khoury HN, Mackenzie RC, Rüssel JD, Tait JM (1984) An iron-free volkonskoite. Clay Miner 19: 43–57Google Scholar
  134. 134.
    Knorring O von, Brindley GW, Hunter K (1952) Nacrite from Hirvivaara, Finland. Mineralog Mag 29: 963–972Google Scholar
  135. 135.
    Kodama H (1966) The nature of the component layers of rectorite. Am Min 51: 1035–1055Google Scholar
  136. 136.
    Kodama H, Oinuma K (1963) Identification of kaolin minerals in the presence of chlorite by x-ray diffraction and infrared absorption spectra. Clays Clay Min 11: 236–249Google Scholar
  137. 137.
    Kohler EE, Köster HM (1976) Zur Mineralogie, Kristallchemie und Geochemie kretazischer Glaukonite. Clay Miner 11: 273–302Google Scholar
  138. 138.
    Kohyama N, Fukushima K, Fukami A (1978) Observation of the hydrated form of tabular halloysite by an electron microscope equipped with an environmental cell. Clays Clay Min 26: 25–40Google Scholar
  139. 139.
    Komusinski J, Stoch L, Dubiel SM (1981) Application of electron paramagnetic resonance and Mössbauer spectroscopy in the investigation of kaolinite-group mineals. Clays Clay Min 29: 23–30Google Scholar
  140. 140.
    Köster HM (1982) The crystal structure of 2:1 layer silicates. In: Olphen H van, Veniale F (eds) Developments in Sedimentology, no. 35: 41–72. International Clay Conference 1981, Bologna-Pavia. Elsevier, Amsterdam Oxford New YorkGoogle Scholar
  141. 141.
    Köster HM (1977) Die Berechnung kristallchemischer Strukturformeln von 2:1-Schichtsilikaten unter Berücksichtigung der gemessenen Zwischenschichtladungen und Kationen- umtauschkapazitäten sowie die Darstellung der Ladungsverteilung in der Struktur mittels Dreieckskoordinaten. Clay Miner 12: 45–54Google Scholar
  142. 142.
    Köster HM (1969) Beitrag zur Geochemie der Kaoline. Proc Int Clay Conf 1969 Tokyo 1: 273–280Google Scholar
  143. 143.
    Köster HM (1965) Glaukonit aus der Regensburger Oberkreideformation. Beitr Mineral Petrogr 11: 614–620Google Scholar
  144. 144.
    Köster HM (1964) Mineralogische und technologische Untersuchungen an Industriekaolinen. Berichte dtsch keram Ges 41: 1–7, 185–196, 227–235Google Scholar
  145. 145.
    Köster HM (1964) Tonmineralogische und chemische Untersuchungen an Tonen der Oberpfalz. III. Die Tone der Grube Klardorf. Berichte dtsch keram Ges 41: 3376–381Google Scholar
  146. 146.
    Köster HM (1960) Nontronit und Picotit aus dem Basalt des Ölberges bei Hundsangen, Westerwald. Beitr Mineral Petrogr 7: 71–75Google Scholar
  147. 147.
    Kramm U (1980) Sudoite in low-grade manganese-rich assemblages. Neues Jb Miner Abh 138: 1–13Google Scholar
  148. 148.
    Kunze G (1961) Antigorit. Strukturtheoretische Grundlagen und ihre praktische Bedeutung für weitere Serpentin-Forschung. Fortschr Miner 39: 206–324Google Scholar
  149. 149.
    Kunze G (1958) Die gewellte Struktur des Antigorits. II. Z Kristallgr Kristallgeom 110: 282–320Google Scholar
  150. 150.
    Kunze G (1956) Die gewellte Struktur des Antigorits I. Z Kristallogr Kristallgeom 108: 82–107Google Scholar
  151. 151.
    Kunze GW, Bradley WF (1964) Occurence of tabular halloysite in a Texas soil. Clays Clay Min 12: 523–527Google Scholar
  152. 152.
    Kurzweil H (1973) Sedimentpetrographische Untersuchungen an jungtertiären Tonmergelserien der Molassezone Oberösterreichs. Tschermaks Min Petr Mitt 20: 169–215Google Scholar
  153. 153.
    Lagaly G (1991) Erkennung und Identifizierung von Tonmineralen mit organischen Stoffen. In: Tributh H, Lagaly G (Hrsg) Nachweis und Identifizierung von Tonmineralen. DTTG, Gießen, S 86–130Google Scholar
  154. 154.
    Levinson AA (1955) Studies in the mica group: Polymorphism among illites and hydrous micas. Am Min 40: 41–49Google Scholar
  155. 155.
    Levinson AA, Heinrich EW (1954) Studies in the mica group: single crystal data on phlogopites, biotites and mangano-phyllites. Am Min 39: 937–945Google Scholar
  156. 156.
    Lippmann F (1960) Über eine Apparatur zur Differentialthermoanalyse (DTA). Keramische Zeitschrift 11: 475–480, 524–528, 570–573Google Scholar
  157. 157.
    Lippmann F (1956) Clay minerals of Trias. J sedim Petrol 26: 125–139Google Scholar
  158. 158.
    Lippmann F (1954) Über einen Keuperton von Zaisersweiher bei Maulbronn. Heidelbg Beitr Miner Petrogr 4: 130–134Google Scholar
  159. 159.
    Lippmann F (1952) Mineralogische Untersuchungen an einigen niederhessischen Tertiärtonen. Heidelbg Beitr Mineral Petrogr 3: 219–254Google Scholar
  160. 160.
    Lippmann F, Pankau HG (1988) Der Mineralbestand des Mittleren Muschelkalkes von Nagold, Württemberg. Neues Jahrbuch Miner Abh 158: 257–292Google Scholar
  161. 161.
    MacEwan DMC (1958) Fourier transform methods for studying x-ray scattering from lamellar systems. II. The calculation of x-ray diffraction effects for various types of interstratification. Kolloid-Zeitschrift 156: 61–67Google Scholar
  162. 162.
    MacEwan DMC (1956) Fourier transform methods for studying x-ray scattering from lameller systems. I. A direct method for analyzing interstratified mixtures. Kolloid-Zeitschrift 149: 96–108Google Scholar
  163. 163.
    MacEwan DMC (1948) Les mineraux argileux de quelques sols ecossais. Verres Silic Ind 13: 41–46Google Scholar
  164. 164.
    Mackenzie RC (1948) Constitution and relationships among volkonskoites. Clay Miner 19: 669–671Google Scholar
  165. 165.
    Mackenzie RC (1981) Thermoanalytical methods in clay studies. In: Fripiat JJ (ed) Advanced techniques for clay mineral analysis. Elsevier, Amsterdam Oxford New York, pp 5–29Google Scholar
  166. 166.
    Mackenzie RC (1957) The differential thermal investigation of clays. Mineralogical Society, LondonGoogle Scholar
  167. 167.
    Mackenzie RC (1957) Saponite from Allt Ribhein, Fiskavaig Bay, Skye. Mineralog Mag 31: 672–680Google Scholar
  168. 168.
    Mackinnon IDR (1987) The fundamental nature of illite/smectite mixed-layer clay particles: a comment on papers by P.H. Nadeau and coworkers. Clays Clay Min 35: 74–76Google Scholar
  169. 169.
    Marel HW van der, Beutelspacher H (1976) Atlas of infrared spectroscopy of clay minerals and their admixtures. Elsevier, Amsterdam Oxford New YorkGoogle Scholar
  170. 170.
    Marel HW van der, Krohmer P (1969) O-O stretching vibrations in kaolinite and related minerals. Contrib Min Petrol 22: 73–82Google Scholar
  171. 171.
    Martin Vivaldi JL, MacEwan DMC (1960) Corrensite and swelling chlorite. Clay Miner Bull 4: 173–181Google Scholar
  172. 172.
    Matthes S (1955) Mikroskopie der technisch nutzbaren Asbeste. In: Freund H (Hrsg) Handbuch der Mikroskopie in der Technik, B IV, Teil 1 „Gesteine“. Umschau, Frankfurt, S 783–796Google Scholar
  173. 173.
    McKenzie RM (1989) Manganese oxides and hydroxides. In: Dixon JB, Weeds SB (eds) Minerals in soil environments. Soil Sci Soc of America, Madison, Wisconsin, USA, pp 439–466Google Scholar
  174. 174.
    Meads RE, Maiden PJ (1975) Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions. Clays Clay Min 10: 313–345Google Scholar
  175. 175.
    Mehmel M (1935) Halloysit und Metahalloysit. Z Kristallogr Kristallgeom 90: 35–43Google Scholar
  176. 176.
    Mestdagh MM, Vielvoye L, Herbillon AJ (1980) Iron in kaolinite. II. The relationship between kaolinite crystallinity and iron content. Clay Miner 15: 1–13Google Scholar
  177. 177.
    Miller WD, Keller WD (1963) Differentiation between endellite halloysite and kaolinite by treatment with potassium acetate and ethylene glycol. Clays Clay Min 10: 244–253Google Scholar
  178. 178.
    Milnes AR, Fitzpatrick RW (1989) Titanium and zirconium minerals. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Sci Soc of America, Madison, Wisconsin, USA, pp 1131–1206Google Scholar
  179. 179.
    Mitra GB (1965) Diffraction intensities from a cluster of curved crystallites. I. General theory for one- and two-dimensional cases. Acta crystallogr 18: 464–467Google Scholar
  180. 180.
    Mitra GB, Bhattacherjee S (1975) The structure of halloysite. Acta crystallogr B 31: 2851–2857Google Scholar
  181. 181.
    Mitra GB, Bhattacherjee S (1971) Diffraction intensities from a cluster of curved crystallites. III. Three-dimensional case. Acta crystallogr A 27: 22–28Google Scholar
  182. 182.
    Mitra GB, Bhattacherjee S (1968) Diffraction intensities from a cluster of curved crystallites. II. The effect of curvature. Acta crystallogr A 24: 266–269Google Scholar
  183. 183.
    Moore DM, Reynolds RC (1989) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford New YorkGoogle Scholar
  184. 184.
    Müller G (1963) Zur Kenntnis dioktaedrischer Vierschicht-Phyllosilikate (Sudoit-Reihe der Sudoit-Chlorid-Gruppe). In: Rosenqvist T, Graff-Petersen P (eds) Proceedings of the International Clay Conference 1963, vol 1. Pergamon Press, Oxford London New York Paris, pp 121–130Google Scholar
  185. 185.
    Müller G (1961) Vorläufige Mitteilung über ein neues dioktaedrisches Phyllosilikat mit Chloritstruktur. N Jb Min Mh 5: 112Google Scholar
  186. 186.
    Muños Taboadela M, Aleixandre Ferrandis V (1957) The mica minerals. In: Mackenzie RC (ed) The differential thermal investigation of clays. Mineralogical Society, London, pp 165–190Google Scholar
  187. 187.
    Murray J (1979) Iron oxides. In: Marine minerals. Mineralogical Soc of America, vol 6, Washington, DC, pp 47–98Google Scholar
  188. 188.
    Nadeau PH (1987) Relationship between the main area, volume and thickness for dispersed particles of kaolinites and micaceous clays and their application to surface area and ion exchange properties. Clay Miner 22: 351–356Google Scholar
  189. 189.
    Nadeau PH (1985) The physical dimensions of fundamental clay particles. Clay Miner 20: 499–514Google Scholar
  190. 190.
    Nadeau PH, Tait JM, McHardy WJ, Wilson MJ (1984) Interstratified XRD characteristics of physical mixtures of elementary clay particles. Clay Min 19: 67–76Google Scholar
  191. 191.
    Nadeau PH, Wilson MJ, McHardy WJ, Tait JM (1987) The fundamental nature of interstratified illite/smectite clay particles: a reply. Clays Clay Min 35: 77–79Google Scholar
  192. 192.
    Nadeau PH, Wilson MJ, McHardy WJ, Tait JM (1985) Interstratified clays as fundamental particles: a reply. Clays Clay Min 33: 560Google Scholar
  193. 193.
    Nadeau PH, Wilson MJ, McHardy WJ, Tait JM (1984) Interparticle diffraction: a new concept for interstratified clays. Clay Minerals 19: 757–769Google Scholar
  194. 194.
    Nagelschmidt G (1938) The atomic arrangement and variability of members of the montmorillonite group. Mineralog Mag 25: 140–155Google Scholar
  195. 195.
    Nagy B, Bradley WF (1955) The structural scheme of sepiolite. Am Min 40: 885–892Google Scholar
  196. 196.
    Newman ACD (1987) (ed) Chemistry of clays and clay minerals. Mineralogical Society, Monograph no 6, LongmanGoogle Scholar
  197. 197.
    Newman ACD, Brown G (1987) The chemical constitution of clays. In: Newman ACD (ed) Chemistry of clays and clay minerals. Mineralogical Society London, Monograph no 6, Longman, pp 1–128Google Scholar
  198. 198.
    Newman ACD, Brown G (1966) Chemical changes during the alteration of micas. Clay Min 6: 297–309Google Scholar
  199. 199.
    Newnham RC (1961) A refinement of the dickite structure and some remarks on polymorphism in kaolin minerals. Mineralog Mag 32: 683–704Google Scholar
  200. 200.
    Norrish K (1973) Factors in the weathering of mica to vermiculite. In: Serratosa JM (ed) Proceedings of the International Clay Conference 1972. Division de Ciencias, CSIC, Madrid, pp 417–432Google Scholar
  201. 201.
    Olphen H van (1971) Amorphous clay material. Science 171: 90–91Google Scholar
  202. 202.
    Onnich K (1990) Geochemische und mineralogische Untersuchungen an Nontroniten. Diplomarbeit TU München, unveröffentlichtGoogle Scholar
  203. 203.
    Page NJ (1968) Chemical differences among the serpentine polymorphs. Am Min 53: 201–215Google Scholar
  204. 204.
    Paquet H, Millot G (1972) Geochemical evolution of clay minerals in the weathered products of soils of mediterranean climate. Proc Int Clay Conf 1972 Madrid, pp 199–206Google Scholar
  205. 205.
    Parfitt RL, Furkert RJ, Henmi T (1980) Identification and structure of two types of allophane from volcanic ash soils and tephra. Clays Clay Min 28: 328–334Google Scholar
  206. 206.
    Parker TW (1969) A classification of kaolinites by infrared spectroscopy. Clay Min 8: 135–141Google Scholar
  207. 207.
    Pevear DR, Williams VE, Mustoe GE (1980) Kaolinite, smectite, and K-rectorite in bentonites: Relation to coal rank at Tulameen, British Columbia. Clays Clay Min 28: 241–254Google Scholar
  208. 208.
    Piller H (1952) Die Phasenkontrastmikroskopie als Hilfsmittel zur Bestimmung feinkörniger, speziell dünner, transparenter Minerale. Heidelbg Beitr Mineral Petrogr 3: 307–334Google Scholar
  209. 209.
    Plancon A, Tschoubar C (1977) Determination of structural defects in phyllosilicates by x-ray diffraction. I. Principle of calculation of the diffraction phenomena. II. Nature and properties of defects in natural kaolinites. Clays Clay Min 25: 430–450Google Scholar
  210. 210.
    Porrenga DH (1966) Clay minerals in recent sediments of the Niger delta. Clays Clay Min 14: 221–233Google Scholar
  211. 211.
    Preisinger A (1963) Sepiolite and related compounds: Its stability and application. Clays Clay Min 10: 365–371Google Scholar
  212. 212.
    Preisinger A (1959) X-ray study of the structure of sepiolite. Clays Clay Min 6: 61–67Google Scholar
  213. 213.
    Raman KV, Jackson ML (1966) Layer charge relations in minerals of micaceous soils and sediments. Clays Clay Min 14: 53–68Google Scholar
  214. 214.
    Rautureau M (1974) Analyse structurale de la sepiolite par microdiffraction electronique. These Universite d’Orleans, 89 pGoogle Scholar
  215. 215.
    Rautureau M, Tschoubar C (1974) Precisions concernant l’analyse structurale de la sepiolite par microdiffraction electronique. C R Acad Sci Paris 278 B: 25–28Google Scholar
  216. 216.
    Rautureau M, Tschoubar C, Mering J (1972) Analyse structurale de la sepiolite par microdiffraction electronique. C R Acad Sci Paris 274 C: 269–271Google Scholar
  217. 217.
    Rengasamy P, von Asche JB, Uytterhoeven JB (1976) Particle size of Wyoming bentonite and its relation to the cation exchange capacity and the homogeneity of the charge density. Farad Trans 12: 376–381Google Scholar
  218. 218.
    Reynolds RC (1988) Mixed layer chlorite minerals. In: Bailey SW (ed) Hydrous phyllosilicates. Reviews in Mineralogy, vol 19. Mineralogical Society of America, Washington, pp 601–629Google Scholar
  219. 219.
    Reynolds RC (1980) Interstratified clay minerals. In: Brindley GW, Brown G (eds) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society, London, pp 249–303Google Scholar
  220. 220.
    Reynolds RC, Hower J (1970) The nature of interlayering in mixed-layer illite-montmorillonite. Clays Clay Min 18: 25–36Google Scholar
  221. 221.
    Rimsâite J (1967) Studies on rock-forming micas. Bull geol Surv Canada 149Google Scholar
  222. 222.
    Ross CS, Hendricks SB (1945) Minerals of the montmorillonite group; their origin and relation to soils and clays. US Geological Survey Prof. Paper 205-B, pp 23–79Google Scholar
  223. 223.
    Ross CS, Kerr PF (1934) Halloysite and allophane. US Geol Surv Prof Pap 185 G: 135–148Google Scholar
  224. 224.
    Ross M, Smith WL, Ashton WH (1968) Triclinic talc and associated amphiboles from Gouverneur Mining District, New York. Am Min 53: 751–769Google Scholar
  225. 225.
    Roth CB, Jackson ML, Syers JK (1969) Defferation effect on structural ferrous-ferric iron ratio and cec of vermiculites and soils. Clays Clay Min 17: 253–264Google Scholar
  226. 226.
    Saghrawanian B (1977) Mineralogische und kristallchemische Untersuchungen an drei amerikanischen Bentonitproben aus Chambers/Arizona, Otay/Californien, Santa Rita/New Mexiko und Hectorit aus Hector/Californien. Diplomarbeit TU München, unveröffentlichtGoogle Scholar
  227. 227.
    Sahama TG, Knorring von O, Lehtinen M (1968) Cookeite from the Muiane pegmatite, Zambesia, Mozambique. Lithos 1: 12–19Google Scholar
  228. 228.
    Saiger M (1958) Mineralogische und sedimentpetrographische Untersuchungen am Kaolinprofil der Bohrung Kick Nr. 9 bei Schnaittenbach/Opf. Geologica Bavarica 37: 5–84Google Scholar
  229. 229.
    Santos de Souza P, Santos de Souza H, Brindley GW (1966) Mineralogical studies of kaolinite- halloysite clays: IV. A platy mineral with structural swelling and shrinking characteristics. Am Min 51: 1640–1648Google Scholar
  230. 230.
    Sawhney BL (1967) Interstratification in vermiculite. Clays Clay Min 15: 75–84Google Scholar
  231. 231.
    Sawhney BL, Reynolds jr RC (1985) Interstratified clays as fundamental particles: a discussion. Clays Clay Min 33: 559Google Scholar
  232. 232.
    Schmidt ER, Heckrodt RO (1959) A dickite with an elongated crystal habit and its dehydroxylation. Mineralog Mag 32: 314–323Google Scholar
  233. 233.
    Schwertmann U, Taylor RM (1989) Iron oxides. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Sci Soc of America, Madison, Wisconsin, USA, pp 379–438Google Scholar
  234. 234.
    Shimoda S (1969) New data on tosudite. Clays Clay Min 17: 179–184Google Scholar
  235. 235.
    Shirozu H (1978) Chlorite minerals. In: Sudo T, Shimoda S (eds) Clays and Clay Minerals of Japan. Elsevier, Amsterdam, pp 265–322Google Scholar
  236. 236.
    Singer A (1984) Pedogenic palygorskite in the arid environment. In: Singer A, Galan E (eds) Palygorskite-Sepiolite. Occurences, genesis, and uses. Developments in Sedimentology 37: 169–177. Elsevier, AmsterdamGoogle Scholar
  237. 237.
    Slade PG, Stone PA, Radoslovich EW (1985) Interlayer structures of the two-layer hydrates of Na- and Ca-vermiculites. Clays Clay Min 33: 51–61Google Scholar
  238. 238.
    Smith WW (1962) Weathering of some Scottish basic igneous rocks with reference to soil formation. J Soil Sci 13: 202–215Google Scholar
  239. 239.
    Smith JV, Yoder HS (1956) Experimental and theoretical studies of the mica polymorphs. Mineralog Mag 31: 209–235Google Scholar
  240. 240.
    Smykatz-Kloss W (1974) Differential thermal analysis. Application and results in mineralogy. Springer, Berlin Heidelberg New YorkGoogle Scholar
  241. 241.
    Springer G (1976) Faleondoite, a nickel analogue of sepiolite. Can Min 14: 407–409Google Scholar
  242. 242.
    Stephen I (1954) An occurence of palygorskite in the Shetland Isles. Mineralog Mag 30: 471–480Google Scholar
  243. 243.
    Störr M, Köster HM, Kromer H, Hilz M (1991) Minerale der Crandallit-Reihe im Kaolin von Hirschau-Schnaittenbach, Oberpfalz. Z geol Wiss 19: 677–683Google Scholar
  244. 244.
    Stucki JW, Golden DC, Roth CB (1984) Effects of reduction and reoxidation of structural iron on the surface charge and dissolution of dioctahedral smectites. Clays Clay Min 32: 350–356Google Scholar
  245. 245.
    Stucki JW, Goodman BA, Schwertmann U (eds) (1988) Iron in soils and clay minerals. NATO ASI Series, ReidelGoogle Scholar
  246. 246.
    Sudo T, Kodama H (1957) An aluminium mixed-layer mineral of montmorillonite chlorite. Z Kristallogr Kristallgeom 109: 379–387Google Scholar
  247. 247.
    Sudo T, Sato M (1966) Dioctahedral chlorite. In: Heller L, Weiss A (eds) Proceedings of the International Clay Conference 1966, vol 1. Israel Program for Scientific Translations, Jerusalem, pp 33–39Google Scholar
  248. 248.
    Suquet H, Pezerat H (1987) Parameters influencing layer stacking types in saponite and vermiculite: a review. Clays Clay Min 35: 353–362Google Scholar
  249. 249.
    Sykes ML, Moody JB (1978) Pyrophyllite and metamorphism in the Carolina slate belt. Am Min 63: 96–108Google Scholar
  250. 250.
    Taylor RM (1987) Non-silicate oxides and hydroxides. In: Newman ACD (ed) Chemistry of clays and clay minerals. Mineralogical Society London, Monograph no 6. Longman, pp 129–201Google Scholar
  251. 251.
    Theng BKG, Churchman GJ, Whitton JS, Claridge GGC (1984) Comparison of intercalation methods for differentiating halloysite from kaolinite. Clays Clay Min 32: 249–258Google Scholar
  252. 252.
    Thompson GR, Hower J (1975) The mineralogy of glauconite. Clays Clay Min 23: 289–300Google Scholar
  253. 253.
    Tröger WE (1959) Optische Bestimmung der gesteinsbildenden Minerale. Teil 1: Bestimmungstabellen, 3. Aufl. Schweizerbartsche Verlagsbuchhandlung, StuttgartGoogle Scholar
  254. 254.
    Tsuzuki Y, Nagasawa K (1960) A study of the exothermic reaction of allophane. Adv Clay Sci (Tokyo) 2: 377–384Google Scholar
  255. 255.
    Turekian KK (1972) Chemistry of the earth. Holt, Rinehart & Winston, New YorkGoogle Scholar
  256. 256.
    Vali H, Köster HM (1986) Expanding behaviour, structural disorder, regular and random irregular interstratification of 2:1 layer-silicates studied by high-resolution images of transmission electron microscopy. Clay Min 21: 827–859Google Scholar
  257. 257.
    Veith JA, Jackson ML (1974) Iron oxidation and reduction effects on structural hydroxyl and layer charge in aqueous suspensions of micaceous vermiculites. Clays Clay Min 22: 345–353Google Scholar
  258. 258.
    Vogt K, Köster HM (1978) Zur Mineralogie, Kristallchemie und Geochemie einiger Montmorillonite aus Bentoniten. Clay Min 13: 25–43Google Scholar
  259. 259.
    Wada K (1989) Allophane and imogolite. In: Minerals in soil environments, 2nd edn. Soil Science Society of America, Madison, Wisconsin, USA, pp 1051–1988Google Scholar
  260. 260.
    Wada K (1961) Lattice expansion of kaolin minerals by treatment with potassium acetate. Am Min 46: 78–91Google Scholar
  261. 261.
    Wada K, Henmi T, Yoshinaga N, Patterson SH (1972) Imogolite and allophane formed in saprolite of basalt on Maui, Hawaii. Clays Clay Min 20: 375–380Google Scholar
  262. 262.
    Wada K, Yoshinaga N (1969) The structure of imogolite. Am Miner 54: 50–71Google Scholar
  263. 263.
    Wada K, Yoshinaga N, Yotsumoto H, Ibe K, Aida S (1970) High resolution electron micrographs of imogolite. Clay Min 8: 487–489Google Scholar
  264. 264.
    Walker GF (1950) Trioctahedral minerals in soil clays. Mineralog Mag 29: 72–84Google Scholar
  265. 265.
    Weaver CE (1976) The nature of TiO2 in kaolinite. Clays Clay Min 24: 215–218Google Scholar
  266. 266.
    Weaver CE (1956) The distribution and identification of mixed-layer clays in sedimentary rocks. Am Min 41: 202–221Google Scholar
  267. 267.
    Weaver CE, Beck KC (1977) Miocene of the S.E. United States: A model for chemical sedimentation in a peri-marine environment. Sediment Geol 17: 1–234Google Scholar
  268. 268.
    Weir AH, Greene-Kelly R (1962) Beidellite. Am Min 47: 137–146Google Scholar
  269. 269.
    Weiss A, Hofmann U (1951) Batavit. Z Naturforsch 6b: 405–409Google Scholar
  270. 270.
    Weiss A, Range KJ (1966) Über Titan im Gitter von Kaolin. Proc Int Clay Conf 1966 Jerusalem 1: 53–66Google Scholar
  271. 271.
    Westfehling R (1987) Über den Ladungsnullpunkt von Tonmineralen. Diss Univ Kiel 1987Google Scholar
  272. 272.
    Whittaker EJW, Zussman J (1956) The characterization of serpentine minerals by x-ray diffraction. Mineralog Mag 31: 107–126Google Scholar
  273. 273.
    Wise WS, Eugster HP (1964) Celadonite: synthesis, thermal stability and occurence. Am Min 49: 1031–1083Google Scholar
  274. 274.
    Wolfe RW, Giese jr RF (1973) A quantitative study of one-layer polytypism in the kaolin minerals. Proc Int Clay Conf 1972 Madrid, 27–33Google Scholar
  275. 275.
    Yada K (1971) Study of microstructure of chrysotile asbestos by high resolution electron microscopy. Acta crystallogr A 27: 659–664Google Scholar
  276. 276.
    Yasyrev AP (1966) Distribution of trace elements in glauconites of the Russian platform. Dokl Acad Sci USSR Earth Sci Sect 168: 197–199. Übersetzung: Dokl Akad Nauk SSSR 168: 914–916 (1968)Google Scholar
  277. 277.
    Yoder HS, Eugster HP (1955) Synthetic and natural muscovites. Geochim cosmochim Acta 8: 225–280Google Scholar
  278. 278.
    Yoder HS, Eugster HP (1954) Phlogopite synthesis and stability range. Geochim cosmochim Acta 6: 157–185Google Scholar
  279. 279.
    Yoshinaga N, Aomine S (1962) Allophane in some Ando soils. Soil Sci Plant Nutr (Tokyo) 8 (2): 6–13Google Scholar
  280. 280.
    Yoshinaga N, Aomine S (1962) Imogolite in some Ando soils. Soil Sci Plant Nutr (Tokyo) 8 (3): 22–29Google Scholar
  281. 281.
    Yoshinaga N, Yotsumoto H, Ibe K (1968) An electron microscopic study of soil allophane with an ordered structure. Am Min 53: 319–323Google Scholar
  282. 282.
    Zvyagin BB (1962) Polymorphism of double-layer minerals of the kaolinite type. Soviet Phys Crystallogr 7: 38–51Google Scholar
  283. 283.
    Zvyagin BB, Mishchenko KS, Shitov VA (1963) Electron diffraction data on the structures of sepiolite and palygorskite. Soviet Phys Crystallogr 8: 148–153Google Scholar
  284. 284.
    Zvyagin BB, Mishchenko KS, Soboleva SV (1969) Structure of pyrophyllite and talc in relation to the polytypes of mica-type minerals. Soviet Phys Crystallogr 13: 511–515Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag, GmbH & Co. KG Darmstadt 1993

Authors and Affiliations

  • H. M. Köster
  • U. Schwertmann

There are no affiliations available

Personalised recommendations