Skip to main content

Beschreibung Einzelner Tonminerale

  • Chapter
Tonminerale und Tone

Zusammenfassung

Der Strukturtyp der Zweischichtminerale wird vertreten durch die dioktaedrischen Aluminiumminerale der Kaolingruppe und die trioktaedrischen Magnesiumminerale der Serpentingruppe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Ahn JH, Peacor DR, Coombs DS (1988) Formation mechanisms of illite, chlorite and mixed-layer illite-chlorite in Triassic volcanogenic sediments from the Southland syncline, New Zealand. Contrib Mineral Petrol 99: 82–89

    Google Scholar 

  2. Alietti A (1958) Some interstratified clay minerals of the Taro Valley. Clay Miner Bull 3: 207–211

    Google Scholar 

  3. Bailey SW (1988) Chlorites: Structures and crystal chemistry. In: Bailey SW (ed) Hydrous phyllosilicates (exclusive of micas). Reviews in Mineralogy, vol 19. Mineralogical Society of America, pp 347–403

    Google Scholar 

  4. Bailey SW, ed (1984) Micas. Reviews in Mineralogy, vol 13. Mineralogical Society of America

    Google Scholar 

  5. Bailey SW (1982) Nomenclature for regular inter stratifications. Am Min 67: 394–398

    Google Scholar 

  6. Bailey SW (1980) Comment. Summary of recommendations of AIPEA nomenclature committee. Clays Clay Min 28: 73–78

    Google Scholar 

  7. Bailey SW (1980) Structures of layer silicates. In: Brindley GW, Brown G (eds) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society, London, pp 1–124

    Google Scholar 

  8. Bailey SW (1969) Polytypism of trioctahedral 1:1 layer silicates. Clays Clay Min 17: 355–371

    Google Scholar 

  9. Bailey SW (1963) The polymorphism of kaolin minerals. Am Min 48: 1196–1209

    Google Scholar 

  10. Bailey SW, Brown BE (1962) Chlorite polytypism: Regular and semi-random one-layer structures. Am Min 47: 819–850

    Google Scholar 

  11. Barshad I (1948) Vermiculite and its relation to biotite as revealed by base exchange reactions, X-ray analysis, differential thermal curves and water content. Am Min 33: 655–678

    Google Scholar 

  12. Barshad I, Kishk FM (1969) Chemical composition of soil vermiculite clays as related to their genesis. Contrib Mineral Petrol 24: 236–155

    Google Scholar 

  13. Basset WA (1963) The geology of vermiculite occurrences. Clays Clay Min 10: 61–69

    Google Scholar 

  14. Bates TF (1958) Selected electron micrographs of clays. Circular no 51. Mineral Industries Experiment Station, State University Pennsylvania.

    Google Scholar 

  15. Ben Rhaiem H, Tessier D, Pons CH (1986) Comportement hydrique et évolution structurale et texturale des montmorillonites au cours d’un cycle de dessiccation-humectation: I. Cas des montmorillonites calciques. Clay Min 21: 9–29

    Google Scholar 

  16. Biedl A, Preisinger A (1963) Die Struktur des Loughlinit (Natrium-Sepiolith). Fortschr Miner 40: 550–51

    Google Scholar 

  17. Bigham JM, Jaynes WT, Allen BL (1980) Pedogenic alteration of sepiolite and palygorskite on the Texas High Plains. Soil Sci Soc Am J 44: 159–167

    Google Scholar 

  18. Biscaye PE (1964) Distinction between kaolinite and chlorite in recent sediments by X-ray diffraction. Am Min 49: 1281–1289

    Google Scholar 

  19. Bish DL, Dreele R Von (1988) Rietfeld refinement of the crystal structure of kaolinite. Annual Meeting of the Clay Minerals Society, East Lansing, Michigan (Abstr.)

    Google Scholar 

  20. Black PM (1975) Mineralogy of New Caledonian metamorphic rocks: IV. Sheet silicates from the Quégoa district. Contrib Miner Petrogr 49: 269–284

    Google Scholar 

  21. Blatter CL, Roberson HE, Thompson GR (1973) Regularity interstratified chlorite-dioetahedral smectite in dike-intruded shales, Montana. Clays Clay Min 21: 207–212

    Google Scholar 

  22. Blount AM, Threadgold IM, Bailey SW (1969) Refinement of the crystal structure of nacrite. Clays Clay Min 17: 185–194

    Google Scholar 

  23. Bowles FA, Angino EA, Hosterman JW, Galle OK (1971) Precipitation of deep sea palygorskite and sepiolite. Earth Planet Sci Lett 11: 324–332

    Google Scholar 

  24. Bradley WF (1954) X-ray diffraction criteria for the characterization of chloritic material in sediments. Clays Clay Min 2: 324–334

    Google Scholar 

  25. Bradley WF (1950) The alternating layer sequence of rectorite. Am Min 35: 590–595

    Google Scholar 

  26. Bradley WF (1945) Diagnostic criteria for clay minerals. Am Min 30: 704–713

    Google Scholar 

  27. Bradley WF (1940) The structural scheme of attapulgite. Am Min 25: 405–410

    Google Scholar 

  28. Bradley WF, Weaver CE (1956) A regularly interstratified chlorite-vermiculite mineral. Am Min 41: 497–504

    Google Scholar 

  29. Brauner K, Preisinger A (1956) Struktur und Entstehung des Sepioliths. Tschermaks Miner Petrogr Mitt 6: 120–140

    Google Scholar 

  30. Brigatti MF, Poppi L (1984) ‘Corrensite-like minerals‘in the Taro and Ceno valleys, Italy. Clay Min 19: 59–66

    Google Scholar 

  31. Brindley GW (1980) Structures of layer silicates. In: Brindley GW, Brown G (eds) Crystal structure of clay minerals and their X-ray identification. Mineralogical Society London 1980

    Google Scholar 

  32. Brindley GW (1959) X-ray and electron diffraction data for sepiolite. Am Min 44: 495–500

    Google Scholar 

  33. Brindley GW (1955) Stevensite, a montmorillonite-type mineral showing mixed-layer characteristics. Am Min 40: 239–247

    Google Scholar 

  34. Brindley GW (1951) The crystal structure of some chamosite minerals. Mineralog Mag 29: 502–525

    Google Scholar 

  35. Brindley GW, Ali SZ (1950) X-ray study of thermal transformations in some magnesian chlorite minerals. Acta Crystallogr 3: 25–30

    Google Scholar 

  36. Brindley GW, Brown G, (1980) (eds) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society London 1980

    Google Scholar 

  37. Brindley GW, Pedro G (1970) Report of the AIPEA nomenclature committee. AIPEA Newsletter 7: 8–13

    Google Scholar 

  38. Brindley GW, Porter ARD (1978) Occurence of dickite in Jamaica - ordered and disordered varieties. Am Min 63: 554–562

    Google Scholar 

  39. Brindley GW, Robinson K (1948) Metahalloysite. Mineralog Mag 28: 393–407

    Google Scholar 

  40. Brindley GW, Robinson K (1946) The structure of kaolinite. Mineralog Mag 27: 242–253

    Google Scholar 

  41. Brindley GW, Santos de Souza P, Santos de Souza H (1963) Mineralogical studies of kaolinitehalloysite clays. I. Identification problems. Am Min 48: 897–910

    Google Scholar 

  42. Brindley GW, Wardle R (1970) Monoclinic and triclinic forms of pyrophyllite and pyrophyllite anhydrite. Am Min 55: 1259–1272

    Google Scholar 

  43. Brown G (1980) Associated minerals. In: Brindley GW, Brown G (eds) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society London, pp 361–410

    Google Scholar 

  44. Brown G (1955) Report of the clay minerals group subcommittee on nomenclature of clay minerals. Clay Miner Bull 2: 294–302

    Google Scholar 

  45. Brown G (1953) The dioctahedral analogue of vermiculite. Clay Minerals Bull 2: 64–70

    Google Scholar 

  46. Brown G, Weir AH (1963) The identity of rectorite and allevardite. Proc Int Clay Conf 1963 Stockholm 1: 27–35

    Google Scholar 

  47. Buckley HA, Bevan JC, Brown KM, Johnson LR (1978) Glauconite and celadonite: two separate mineral species. Mineralog Mag 42: 373–382

    Google Scholar 

  48. Bystrôm Brusewitz AM (1975) Studies on the Li test to distinguish between beidellite and montmorillonite. Proc Int Clay Conf, Mexico 1975. Applied Publishing, Wilmette, Illinois, USA, pp 419–428

    Google Scholar 

  49. Cahoon HP (1954) Saponite near Milford, Utah. Am Min 39: 222–230

    Google Scholar 

  50. Caillère S, Hénin S (1957) The chlorite and serpentine minerals. In: Mackenzie RC (ed) The differential thermal investigation of clays. Mineralogical Society London 1957, pp 207–230

    Google Scholar 

  51. Caillère S, Hénin S (1957) The sepiolite and palygorskite minerals. In: Mackenzie RC (ed) The differential thermal investigation of clays. Mineralogical Society, London, pp 231–247

    Google Scholar 

  52. Caillère S, Hénin S, Pobeguin T (1962) Présence d’un nouveau type de chlorite dans les bauxites de Saint Paul-de-Fenouillet (Pyrenees-Orientales). C r hebd Séanc Acad Sci Paris 254: 1657–1658

    Google Scholar 

  53. Caillère S, Mathieux-Sicaud A, Hénin S (1950) Nouvel essai d’identification du minéral de La Table près l’allevardite. Bull Soc fr Minér Cristallogr 73: 193–201

    Google Scholar 

  54. Callen RA (1984) Clays of the palygorskite-sepiolite group: Depositional environment, age and distribution. In: Singer A, Galan E (eds) Palygorskite-sepiolite. Occurences, genesis and uses. Developments in Sedimentology 37: 1–37. Elsevier, Amsterdam

    Google Scholar 

  55. Cannings FR (1968) An infrared study of hydroxyl groups on sepiolite. J phys Chem 72: 1072–1074

    Google Scholar 

  56. Cardile CM (1989) Tetrahedral iron in smectite: A critical commentary. Clays Clay Min 37: 185–188

    Google Scholar 

  57. Cardile CM, Johnston JH (1985) Structural studies of nontronites with different iron contents by 57Fe Môssbauer spectroscopy. Clays Clay Min 33: 295–300

    Google Scholar 

  58. Cerny P (1970) Compositional variation in cookeite. Can Min 10: 636–647

    Google Scholar 

  59. Christ CL, Hathaway JC, Hostetler PB, Shepard AO (1969) Palygorskite: new x-ray data. Am Min 54: 198–205

    Google Scholar 

  60. Chukrov FV, Zvyagin BB (1966) Halloysite, a crystallo-chemically and mineralogically distinct species. Proc Int Clay Conf 1966 Jerusalem 1: 11–25

    Google Scholar 

  61. Churchman GJ, Theng BKG (1984) Interactions of halloysites with amides: mineralogical factors affecting complex formation. Clay Min 19: 161–175

    Google Scholar 

  62. Churchman GJ, Whitton JS, Claridge GGC, Theng BKG (1984) Intercalation method using formamide for differentiating halloysite from kaolinite. Clays Clay Min 32: 241–248

    Google Scholar 

  63. Coleman NT, LeRoux FH, Cady JG (1963) Biotite-hydrobiotite-vermiculite in soils. Nature 198: 409–410

    Google Scholar 

  64. Correns CW, Mehmel M (1936) Über den optischen und röntgenographischen Nachweis von Kaolinit, Halloysit und Montmorillonit. Z Kristallogr (A) 94: 337–348; S 699–780

    Google Scholar 

  65. Correns CW, Piller H (1955) Mikroskopie der feinkörnigen Silikate. In: Freund H (Hrsg) Handbuch der Mikroskopie in der Technik, Bd IV, Teil 1 „Gesteine“. Umschau Frankfurt

    Google Scholar 

  66. Couture RA (1977) Composition and origin of palygorskite-rich and montmorillonite-rich zeolite-containing sediments from the Pacific Ocean. Chem Geol 19: 113–130

    Google Scholar 

  67. Cowley JM (1961) Diffraction intensities from bent crystals. Acta crystallogr 14: 920–927

    Google Scholar 

  68. De la Calle C, Dubernat J, Suquet H, Pezerat H, Gaultier JP, Mamy J (1976) Crystal structure of two layer Mg-vermiculites and Na, Ca-vermiculites. In: Bailey SW (ed) Proc Int Clay Conf, Mexico 1975. Applied Publishing, Wilmette, Illinois, USA, pp 201–209

    Google Scholar 

  69. De la Calle C, Plançon A, Pons CH, Dubernat J, Suquet H, Pezerat H (1984) Mode d’empilement des feuillets dans la vermiculite sodique hydratée à une couche (phase à 11.85 Å). Clay Min 19: 563–578

    Google Scholar 

  70. De la Calle C, Suquet H, Pons CH (1988) Stacking order in a 14.30-Å Mg-Vermiculite. Clays Clay Min 36: 481–490

    Google Scholar 

  71. Dolcater DL, Syers JK, Jackson ML (1970) Titanium as free oxide and substituted in kaolinite and other soil minerals. Clays Clay Min 18: 71–79

    Google Scholar 

  72. Douglas LA (1989) Vermiculites. In: Minerals in Soil Environments, 2nd edn. Soil Science Society of America, Madison, Wisconsin, USA, pp 635–674

    Google Scholar 

  73. Douglas LA (1985) Criteria for vermiculitic and chloritic family classes in soil taxonomy. In: Kittrick JA (ed) Mineral classification of soils. Soil Society of America, Madison, Wisconsin. Spec Publ 16, pp 161–167

    Google Scholar 

  74. Drees LR, Wildung LP, Smeck NE, Senkayi AL (1989) Silica in Soils: Quartz and disordered silica polymorphs. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Sci Soc of America, Madison, Wisonsin, USA, pp 913–974

    Google Scholar 

  75. Drits VA, Sokolova GV (1971) Structure of palygorskite. Soviet Phys Crystallogr 16: 183–185

    Google Scholar 

  76. Droste JB, Vitaliano CJ (1973) Tioga bentonite (middle Devonian) of Indiana. Clays Clay Min 21: 9–13

    Google Scholar 

  77. Earley JW, Brindley GW, McVeach WJ, Vanden-Heuvel RC (1956) A regulary interstratified montmorillonite-ehlorite. Am Min 41: 258–267

    Google Scholar 

  78. Earley JW, Osthaus BB, Milne IH (1953) Purification and properties of montmorillonite. Am Min 38: 707–724

    Google Scholar 

  79. Eberl D (1978) Reaction series for dioctahedral smectites. Clays Clay Min 26: 327–340

    Google Scholar 

  80. Echle W (1978) The transformations sepiolite - loughlinite: experiments and field observations. N Jb Miner Abh 133: 303–321

    Google Scholar 

  81. Evans BW, Misch P (1976) A quartz-aragonite-talc schist from the lower Skagit Valley, Washington. Am Min 61: 1005–1008

    Google Scholar 

  82. Fahey JJ, Ross M, Axelrod DJ (1960) Loughlinite, a new hydrous sodium magnesium silicate. Am Min 45: 270–281

    Google Scholar 

  83. Farmer VC (1974) The layer silicates. In: Farmer VC (ed) The infrared spectra of minerals. Mineralogical Society, London, pp 331–364

    Google Scholar 

  84. Farmer VC, Rüssel JD (1967) Infrared absorption spectrometry in clay studies. Clays Clay Min 15: 121–142

    Google Scholar 

  85. Farmer VC, Russel JD (1964) The infrared spectra of layer silicates. Spectrochim Acta 20: 1149–1173

    Google Scholar 

  86. Fleischer P (1972) Sepiolite associated with Miocene diatomite, Santa Cruz Basin, California. Am Min 57: 903–913

    Google Scholar 

  87. Foord EF, Starkey HC, Taggart jr JE, Shawe DR (1987) Reassessment of the volkonskoite-chromium smectite nomenclature problem. Clays Clay Min 35: 139–149

    Google Scholar 

  88. Foster MD (1963) Interpretation of the composition of vermiculites and hydrobiotites. Clays Clay Min 10: 70–89

    Google Scholar 

  89. Foster MD (1953) Geochemieal studies of clay minerals: II. Relation between ionic substitution and swelling in montmorillonites. Am Min 38: 994–1006

    Google Scholar 

  90. Freund F (1972) The defect structure of metakaolinite. Proc Int Clay Conf 1972 Madrid, pp 13–25

    Google Scholar 

  91. Freund F (1967) Kaolinite-metakaolinite: a model structure for high defect concentrations. Berichte dtsch keram Ges 44: 5–17

    Google Scholar 

  92. Fripiat J J (1981) Application of far infrared spectroscopy to the study of clay minerals and zeolites. In: Fripiat JJ (ed) Advanced techniques for clay mineral analysis. Elsevier, Amsterdam Oxford New York, pp 191–210

    Google Scholar 

  93. Galan E, Brell JM, La Iglesia A, Robertson RHS (1975) The Cáceres palygorskite deposit, Spain. Proc Int Clay Conf 1975 Mexico, pp 81–94

    Google Scholar 

  94. Gard JA, Follett EAC (1968) A structural scheme for palygorskite. Clay Min 7: 367–370

    Google Scholar 

  95. Garret WG, Walker GF (1959) The cation-exchange capacity of hydrated halloysite and the formation of halloysite-salt complexes. Clay Min Bull 4: 75–80

    Google Scholar 

  96. Gaudette HE (1964) Magnesium vermiculite from the Twin Sisters Mountains, Washington. Am Min 49: 1754–1763

    Google Scholar 

  97. Giese jr RF (1975) Interlayer bonding in talc and pyrophyllite. Clays Clay Min 23: 165–166

    Google Scholar 

  98. Giovanoli R (1987) Manganese oxide minerals. Trans 134. Congr Int Soil Sci Soc Hamburg 5: 335–345

    Google Scholar 

  99. Greene-Kelly R (1955) Dehydration of montmorillonite minerals. Mineralog Mag 30: 604–615

    Google Scholar 

  100. Grim RE, Bray RH, Bradley WF (1937) The mica in argillaceous sediments. Am Min 22: 813–829

    Google Scholar 

  101. Grim RE, Güven N (1978) Bentonites. Geology, Mineralogy, Properties and Uses. Developments in Sedimentology, no 24. Elsevier Amsterdam Oxford New York

    Google Scholar 

  102. Grim RE, Kulbicki G (1961) Montmorillonite: high temperature reactions and classification. Am Min 46: 1329–1369

    Google Scholar 

  103. Gruner JW (1935) The structural relationship of glauconite and mica. Am Min 20: 699–714

    Google Scholar 

  104. Gruner JW (1934) The structure of vermiculites and their collapse by dehydration. Am Min 19: 557–578

    Google Scholar 

  105. Güven N, Hower WF (1979) A vanadium smectite. Clay Min 14: 241–245

    Google Scholar 

  106. Harward ME, Brindley GW (1964) Swelling properties of synthetic smectites in relation to lattice substitution. Clays Clay Min 16: 437–447

    Google Scholar 

  107. Hashimoto I, Jackson ML (1960) Rapid dissolution of allophane and kaolinite-halloysite after dehydration. Clays Clay Min 7: 102–113

    Google Scholar 

  108. Hayashi H, Otsuka R, Imai N (1969) Infrared study of sepiolite and palygorskite on heating. Am Min 54: 1613–1624

    Google Scholar 

  109. Hayes JB (1963) Kaolinite from Warsaw geodes, Keokuk region, Iowa. Proc Iowa Acad Sci 70: 261–272

    Google Scholar 

  110. Hendricks SB (1938) The crystal structure of the clay minerals dickite, halloysite, and hydrated halloysite. Am Min 23: 295–301

    Google Scholar 

  111. Hendricks SB, Jefferson ME (1938) Structures of kaolin and talc-pyrophyllite hydrates and their bearing on water sorption of the clays. Am Min 23: 863–875

    Google Scholar 

  112. Hendricks SB, Teller E (1942) X-ray interference in partially ordered layer silicates. J chem Phys 10: 147–167

    Google Scholar 

  113. Hénin S, Caillère S (1975) Fibrous minerals. In: Gieseking JE (ed) Soil components. Springer, Berlin

    Google Scholar 

  114. Henmi T, Wada K (1967) Morphology and composition of allophane. Am Min 61: 379–390

    Google Scholar 

  115. Herbillon AJ, Mestdagh MM, Vielvoye L, Derouane EG (1976) Iron in kaolinite with special reference to kaolinite from tropical soils. Clay Minerals 11: 201–220

    Google Scholar 

  116. Hilz M (1979) Die Spurenelemente in Kaolinen, kaolinitischen Tonen und Bentoniten - ihr Verhalten bei Ionenumtauschreaktionen und gegen Säuren. Dissertation TU München

    Google Scholar 

  117. Hinckley DN (1963) Variability in „crystallinity“values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clays Clay Min 11: 229–235

    Google Scholar 

  118. Hirst DM (1962) The geochemistry of modern sediments from the Gulf of Paria - II. The location and distribution of trace elements. Geochim cosmochim Acta 26: 1147–1187

    Google Scholar 

  119. Holdridge DA, Vaughan F (1957) The kaolin minerals (Kandides). In: Mackenzie RC (ed) Differential thermal investigation of clays. Mineralogical Society, London, pp 98–139

    Google Scholar 

  120. Horn MK, Adams JAS (1966) Computer-derived geochemical balances and element abundances. Geochim cosmochim Acta 30: 279–297

    Google Scholar 

  121. Horton RB, Johns WD, Kurzweil H (1985) Illite diagenesis in the Vienna Basin, Austria. Tschermaks Min Petr Mitt 34: 239–260

    Google Scholar 

  122. Hower J, Mowatt TC (1966) The mineralogy of illites and mixed-layer illite/montmorillonites. Am Min 51: 825–854

    Google Scholar 

  123. Hsu PH (1989) Aluminium oxides and oxyhydroxides. In: Dixon JB, Weeds SB (eds) Minerals in soil environments. Soil Sci Soc of America, Madison, Wisconsin, USA, pp 331–378

    Google Scholar 

  124. Hughes JC, Brown G (1979) A crystallinity index for soil kaolins and its relation to parent rock, climate and soil maturity. J Soil Sci 30: 557–563

    Google Scholar 

  125. Hurley PM, Cormier AF, Hower J, Fairbairn HW, Pinson jr WH (1960) Reliability of glauconite for age measurement by K-Ar and Rb-Sr methods. Bull Am Ass Petrol Geol 44: 1793–1808

    Google Scholar 

  126. Iwao S, Udagawa S (1969) Pyrophyllite and “Roseki“clays. In: The Clays of Japan, pp 71–88. Geological Survey of Japan 1969.

    Google Scholar 

  127. Jepson WB, Rowse JB (1975) The composition of kaolinite - an electron microscope microprobe study. Clays Clay Min 23: 310–317

    Google Scholar 

  128. Jones AA (1981) Charges on the surfaces of two chlorites. Clay Miner 16: 347–359

    Google Scholar 

  129. Jones BF, Galan E (1988) Sepiolite and palygorskite. In: Bailey SW (ed) Hydrous phyllosilicates. Reviews in Mineralogy 19: 631–674. Mineralogical Society of America.

    Google Scholar 

  130. Joswig W, Drits VA (1986) The orientation of hydroxyl groups in dickite by x-ray diffraction. N Jb Mineral Mh, H1: 19–22

    Google Scholar 

  131. Kautz K (1964) Sedimentpetrographische Untersuchung zur Diagenese in Sandsteinen der marinen Unterkreide Norddeutschlands. Beitr Mineral Petrogr 9: 423–461

    Google Scholar 

  132. Keller WD, Pickett EE, Reesman AL (1966) Elevated dehydroxylation temperature of Keokuk geode kaolinite. Proc Int Clay Conf 1966 Jerusalem 1: 75–85

    Google Scholar 

  133. Khoury HN, Mackenzie RC, Rüssel JD, Tait JM (1984) An iron-free volkonskoite. Clay Miner 19: 43–57

    Google Scholar 

  134. Knorring O von, Brindley GW, Hunter K (1952) Nacrite from Hirvivaara, Finland. Mineralog Mag 29: 963–972

    Google Scholar 

  135. Kodama H (1966) The nature of the component layers of rectorite. Am Min 51: 1035–1055

    Google Scholar 

  136. Kodama H, Oinuma K (1963) Identification of kaolin minerals in the presence of chlorite by x-ray diffraction and infrared absorption spectra. Clays Clay Min 11: 236–249

    Google Scholar 

  137. Kohler EE, Köster HM (1976) Zur Mineralogie, Kristallchemie und Geochemie kretazischer Glaukonite. Clay Miner 11: 273–302

    Google Scholar 

  138. Kohyama N, Fukushima K, Fukami A (1978) Observation of the hydrated form of tabular halloysite by an electron microscope equipped with an environmental cell. Clays Clay Min 26: 25–40

    Google Scholar 

  139. Komusinski J, Stoch L, Dubiel SM (1981) Application of electron paramagnetic resonance and Mössbauer spectroscopy in the investigation of kaolinite-group mineals. Clays Clay Min 29: 23–30

    Google Scholar 

  140. Köster HM (1982) The crystal structure of 2:1 layer silicates. In: Olphen H van, Veniale F (eds) Developments in Sedimentology, no. 35: 41–72. International Clay Conference 1981, Bologna-Pavia. Elsevier, Amsterdam Oxford New York

    Google Scholar 

  141. Köster HM (1977) Die Berechnung kristallchemischer Strukturformeln von 2:1-Schichtsilikaten unter Berücksichtigung der gemessenen Zwischenschichtladungen und Kationen- umtauschkapazitäten sowie die Darstellung der Ladungsverteilung in der Struktur mittels Dreieckskoordinaten. Clay Miner 12: 45–54

    Google Scholar 

  142. Köster HM (1969) Beitrag zur Geochemie der Kaoline. Proc Int Clay Conf 1969 Tokyo 1: 273–280

    Google Scholar 

  143. Köster HM (1965) Glaukonit aus der Regensburger Oberkreideformation. Beitr Mineral Petrogr 11: 614–620

    Google Scholar 

  144. Köster HM (1964) Mineralogische und technologische Untersuchungen an Industriekaolinen. Berichte dtsch keram Ges 41: 1–7, 185–196, 227–235

    Google Scholar 

  145. Köster HM (1964) Tonmineralogische und chemische Untersuchungen an Tonen der Oberpfalz. III. Die Tone der Grube Klardorf. Berichte dtsch keram Ges 41: 3376–381

    Google Scholar 

  146. Köster HM (1960) Nontronit und Picotit aus dem Basalt des Ölberges bei Hundsangen, Westerwald. Beitr Mineral Petrogr 7: 71–75

    Google Scholar 

  147. Kramm U (1980) Sudoite in low-grade manganese-rich assemblages. Neues Jb Miner Abh 138: 1–13

    Google Scholar 

  148. Kunze G (1961) Antigorit. Strukturtheoretische Grundlagen und ihre praktische Bedeutung für weitere Serpentin-Forschung. Fortschr Miner 39: 206–324

    Google Scholar 

  149. Kunze G (1958) Die gewellte Struktur des Antigorits. II. Z Kristallgr Kristallgeom 110: 282–320

    Google Scholar 

  150. Kunze G (1956) Die gewellte Struktur des Antigorits I. Z Kristallogr Kristallgeom 108: 82–107

    Google Scholar 

  151. Kunze GW, Bradley WF (1964) Occurence of tabular halloysite in a Texas soil. Clays Clay Min 12: 523–527

    Google Scholar 

  152. Kurzweil H (1973) Sedimentpetrographische Untersuchungen an jungtertiären Tonmergelserien der Molassezone Oberösterreichs. Tschermaks Min Petr Mitt 20: 169–215

    Google Scholar 

  153. Lagaly G (1991) Erkennung und Identifizierung von Tonmineralen mit organischen Stoffen. In: Tributh H, Lagaly G (Hrsg) Nachweis und Identifizierung von Tonmineralen. DTTG, Gießen, S 86–130

    Google Scholar 

  154. Levinson AA (1955) Studies in the mica group: Polymorphism among illites and hydrous micas. Am Min 40: 41–49

    Google Scholar 

  155. Levinson AA, Heinrich EW (1954) Studies in the mica group: single crystal data on phlogopites, biotites and mangano-phyllites. Am Min 39: 937–945

    Google Scholar 

  156. Lippmann F (1960) Über eine Apparatur zur Differentialthermoanalyse (DTA). Keramische Zeitschrift 11: 475–480, 524–528, 570–573

    Google Scholar 

  157. Lippmann F (1956) Clay minerals of Trias. J sedim Petrol 26: 125–139

    Google Scholar 

  158. Lippmann F (1954) Über einen Keuperton von Zaisersweiher bei Maulbronn. Heidelbg Beitr Miner Petrogr 4: 130–134

    Google Scholar 

  159. Lippmann F (1952) Mineralogische Untersuchungen an einigen niederhessischen Tertiärtonen. Heidelbg Beitr Mineral Petrogr 3: 219–254

    Google Scholar 

  160. Lippmann F, Pankau HG (1988) Der Mineralbestand des Mittleren Muschelkalkes von Nagold, Württemberg. Neues Jahrbuch Miner Abh 158: 257–292

    Google Scholar 

  161. MacEwan DMC (1958) Fourier transform methods for studying x-ray scattering from lamellar systems. II. The calculation of x-ray diffraction effects for various types of interstratification. Kolloid-Zeitschrift 156: 61–67

    Google Scholar 

  162. MacEwan DMC (1956) Fourier transform methods for studying x-ray scattering from lameller systems. I. A direct method for analyzing interstratified mixtures. Kolloid-Zeitschrift 149: 96–108

    Google Scholar 

  163. MacEwan DMC (1948) Les mineraux argileux de quelques sols ecossais. Verres Silic Ind 13: 41–46

    Google Scholar 

  164. Mackenzie RC (1948) Constitution and relationships among volkonskoites. Clay Miner 19: 669–671

    Google Scholar 

  165. Mackenzie RC (1981) Thermoanalytical methods in clay studies. In: Fripiat JJ (ed) Advanced techniques for clay mineral analysis. Elsevier, Amsterdam Oxford New York, pp 5–29

    Google Scholar 

  166. Mackenzie RC (1957) The differential thermal investigation of clays. Mineralogical Society, London

    Google Scholar 

  167. Mackenzie RC (1957) Saponite from Allt Ribhein, Fiskavaig Bay, Skye. Mineralog Mag 31: 672–680

    Google Scholar 

  168. Mackinnon IDR (1987) The fundamental nature of illite/smectite mixed-layer clay particles: a comment on papers by P.H. Nadeau and coworkers. Clays Clay Min 35: 74–76

    Google Scholar 

  169. Marel HW van der, Beutelspacher H (1976) Atlas of infrared spectroscopy of clay minerals and their admixtures. Elsevier, Amsterdam Oxford New York

    Google Scholar 

  170. Marel HW van der, Krohmer P (1969) O-O stretching vibrations in kaolinite and related minerals. Contrib Min Petrol 22: 73–82

    Google Scholar 

  171. Martin Vivaldi JL, MacEwan DMC (1960) Corrensite and swelling chlorite. Clay Miner Bull 4: 173–181

    Google Scholar 

  172. Matthes S (1955) Mikroskopie der technisch nutzbaren Asbeste. In: Freund H (Hrsg) Handbuch der Mikroskopie in der Technik, B IV, Teil 1 „Gesteine“. Umschau, Frankfurt, S 783–796

    Google Scholar 

  173. McKenzie RM (1989) Manganese oxides and hydroxides. In: Dixon JB, Weeds SB (eds) Minerals in soil environments. Soil Sci Soc of America, Madison, Wisconsin, USA, pp 439–466

    Google Scholar 

  174. Meads RE, Maiden PJ (1975) Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions. Clays Clay Min 10: 313–345

    Google Scholar 

  175. Mehmel M (1935) Halloysit und Metahalloysit. Z Kristallogr Kristallgeom 90: 35–43

    Google Scholar 

  176. Mestdagh MM, Vielvoye L, Herbillon AJ (1980) Iron in kaolinite. II. The relationship between kaolinite crystallinity and iron content. Clay Miner 15: 1–13

    Google Scholar 

  177. Miller WD, Keller WD (1963) Differentiation between endellite halloysite and kaolinite by treatment with potassium acetate and ethylene glycol. Clays Clay Min 10: 244–253

    Google Scholar 

  178. Milnes AR, Fitzpatrick RW (1989) Titanium and zirconium minerals. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Sci Soc of America, Madison, Wisconsin, USA, pp 1131–1206

    Google Scholar 

  179. Mitra GB (1965) Diffraction intensities from a cluster of curved crystallites. I. General theory for one- and two-dimensional cases. Acta crystallogr 18: 464–467

    Google Scholar 

  180. Mitra GB, Bhattacherjee S (1975) The structure of halloysite. Acta crystallogr B 31: 2851–2857

    Google Scholar 

  181. Mitra GB, Bhattacherjee S (1971) Diffraction intensities from a cluster of curved crystallites. III. Three-dimensional case. Acta crystallogr A 27: 22–28

    Google Scholar 

  182. Mitra GB, Bhattacherjee S (1968) Diffraction intensities from a cluster of curved crystallites. II. The effect of curvature. Acta crystallogr A 24: 266–269

    Google Scholar 

  183. Moore DM, Reynolds RC (1989) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford New York

    Google Scholar 

  184. Müller G (1963) Zur Kenntnis dioktaedrischer Vierschicht-Phyllosilikate (Sudoit-Reihe der Sudoit-Chlorid-Gruppe). In: Rosenqvist T, Graff-Petersen P (eds) Proceedings of the International Clay Conference 1963, vol 1. Pergamon Press, Oxford London New York Paris, pp 121–130

    Google Scholar 

  185. Müller G (1961) Vorläufige Mitteilung über ein neues dioktaedrisches Phyllosilikat mit Chloritstruktur. N Jb Min Mh 5: 112

    Google Scholar 

  186. Muños Taboadela M, Aleixandre Ferrandis V (1957) The mica minerals. In: Mackenzie RC (ed) The differential thermal investigation of clays. Mineralogical Society, London, pp 165–190

    Google Scholar 

  187. Murray J (1979) Iron oxides. In: Marine minerals. Mineralogical Soc of America, vol 6, Washington, DC, pp 47–98

    Google Scholar 

  188. Nadeau PH (1987) Relationship between the main area, volume and thickness for dispersed particles of kaolinites and micaceous clays and their application to surface area and ion exchange properties. Clay Miner 22: 351–356

    Google Scholar 

  189. Nadeau PH (1985) The physical dimensions of fundamental clay particles. Clay Miner 20: 499–514

    Google Scholar 

  190. Nadeau PH, Tait JM, McHardy WJ, Wilson MJ (1984) Interstratified XRD characteristics of physical mixtures of elementary clay particles. Clay Min 19: 67–76

    Google Scholar 

  191. Nadeau PH, Wilson MJ, McHardy WJ, Tait JM (1987) The fundamental nature of interstratified illite/smectite clay particles: a reply. Clays Clay Min 35: 77–79

    Google Scholar 

  192. Nadeau PH, Wilson MJ, McHardy WJ, Tait JM (1985) Interstratified clays as fundamental particles: a reply. Clays Clay Min 33: 560

    Google Scholar 

  193. Nadeau PH, Wilson MJ, McHardy WJ, Tait JM (1984) Interparticle diffraction: a new concept for interstratified clays. Clay Minerals 19: 757–769

    Google Scholar 

  194. Nagelschmidt G (1938) The atomic arrangement and variability of members of the montmorillonite group. Mineralog Mag 25: 140–155

    Google Scholar 

  195. Nagy B, Bradley WF (1955) The structural scheme of sepiolite. Am Min 40: 885–892

    Google Scholar 

  196. Newman ACD (1987) (ed) Chemistry of clays and clay minerals. Mineralogical Society, Monograph no 6, Longman

    Google Scholar 

  197. Newman ACD, Brown G (1987) The chemical constitution of clays. In: Newman ACD (ed) Chemistry of clays and clay minerals. Mineralogical Society London, Monograph no 6, Longman, pp 1–128

    Google Scholar 

  198. Newman ACD, Brown G (1966) Chemical changes during the alteration of micas. Clay Min 6: 297–309

    Google Scholar 

  199. Newnham RC (1961) A refinement of the dickite structure and some remarks on polymorphism in kaolin minerals. Mineralog Mag 32: 683–704

    Google Scholar 

  200. Norrish K (1973) Factors in the weathering of mica to vermiculite. In: Serratosa JM (ed) Proceedings of the International Clay Conference 1972. Division de Ciencias, CSIC, Madrid, pp 417–432

    Google Scholar 

  201. Olphen H van (1971) Amorphous clay material. Science 171: 90–91

    Google Scholar 

  202. Onnich K (1990) Geochemische und mineralogische Untersuchungen an Nontroniten. Diplomarbeit TU München, unveröffentlicht

    Google Scholar 

  203. Page NJ (1968) Chemical differences among the serpentine polymorphs. Am Min 53: 201–215

    Google Scholar 

  204. Paquet H, Millot G (1972) Geochemical evolution of clay minerals in the weathered products of soils of mediterranean climate. Proc Int Clay Conf 1972 Madrid, pp 199–206

    Google Scholar 

  205. Parfitt RL, Furkert RJ, Henmi T (1980) Identification and structure of two types of allophane from volcanic ash soils and tephra. Clays Clay Min 28: 328–334

    Google Scholar 

  206. Parker TW (1969) A classification of kaolinites by infrared spectroscopy. Clay Min 8: 135–141

    Google Scholar 

  207. Pevear DR, Williams VE, Mustoe GE (1980) Kaolinite, smectite, and K-rectorite in bentonites: Relation to coal rank at Tulameen, British Columbia. Clays Clay Min 28: 241–254

    Google Scholar 

  208. Piller H (1952) Die Phasenkontrastmikroskopie als Hilfsmittel zur Bestimmung feinkörniger, speziell dünner, transparenter Minerale. Heidelbg Beitr Mineral Petrogr 3: 307–334

    Google Scholar 

  209. Plancon A, Tschoubar C (1977) Determination of structural defects in phyllosilicates by x-ray diffraction. I. Principle of calculation of the diffraction phenomena. II. Nature and properties of defects in natural kaolinites. Clays Clay Min 25: 430–450

    Google Scholar 

  210. Porrenga DH (1966) Clay minerals in recent sediments of the Niger delta. Clays Clay Min 14: 221–233

    Google Scholar 

  211. Preisinger A (1963) Sepiolite and related compounds: Its stability and application. Clays Clay Min 10: 365–371

    Google Scholar 

  212. Preisinger A (1959) X-ray study of the structure of sepiolite. Clays Clay Min 6: 61–67

    Google Scholar 

  213. Raman KV, Jackson ML (1966) Layer charge relations in minerals of micaceous soils and sediments. Clays Clay Min 14: 53–68

    Google Scholar 

  214. Rautureau M (1974) Analyse structurale de la sepiolite par microdiffraction electronique. These Universite d’Orleans, 89 p

    Google Scholar 

  215. Rautureau M, Tschoubar C (1974) Precisions concernant l’analyse structurale de la sepiolite par microdiffraction electronique. C R Acad Sci Paris 278 B: 25–28

    Google Scholar 

  216. Rautureau M, Tschoubar C, Mering J (1972) Analyse structurale de la sepiolite par microdiffraction electronique. C R Acad Sci Paris 274 C: 269–271

    Google Scholar 

  217. Rengasamy P, von Asche JB, Uytterhoeven JB (1976) Particle size of Wyoming bentonite and its relation to the cation exchange capacity and the homogeneity of the charge density. Farad Trans 12: 376–381

    Google Scholar 

  218. Reynolds RC (1988) Mixed layer chlorite minerals. In: Bailey SW (ed) Hydrous phyllosilicates. Reviews in Mineralogy, vol 19. Mineralogical Society of America, Washington, pp 601–629

    Google Scholar 

  219. Reynolds RC (1980) Interstratified clay minerals. In: Brindley GW, Brown G (eds) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society, London, pp 249–303

    Google Scholar 

  220. Reynolds RC, Hower J (1970) The nature of interlayering in mixed-layer illite-montmorillonite. Clays Clay Min 18: 25–36

    Google Scholar 

  221. Rimsâite J (1967) Studies on rock-forming micas. Bull geol Surv Canada 149

    Google Scholar 

  222. Ross CS, Hendricks SB (1945) Minerals of the montmorillonite group; their origin and relation to soils and clays. US Geological Survey Prof. Paper 205-B, pp 23–79

    Google Scholar 

  223. Ross CS, Kerr PF (1934) Halloysite and allophane. US Geol Surv Prof Pap 185 G: 135–148

    Google Scholar 

  224. Ross M, Smith WL, Ashton WH (1968) Triclinic talc and associated amphiboles from Gouverneur Mining District, New York. Am Min 53: 751–769

    Google Scholar 

  225. Roth CB, Jackson ML, Syers JK (1969) Defferation effect on structural ferrous-ferric iron ratio and cec of vermiculites and soils. Clays Clay Min 17: 253–264

    Google Scholar 

  226. Saghrawanian B (1977) Mineralogische und kristallchemische Untersuchungen an drei amerikanischen Bentonitproben aus Chambers/Arizona, Otay/Californien, Santa Rita/New Mexiko und Hectorit aus Hector/Californien. Diplomarbeit TU München, unveröffentlicht

    Google Scholar 

  227. Sahama TG, Knorring von O, Lehtinen M (1968) Cookeite from the Muiane pegmatite, Zambesia, Mozambique. Lithos 1: 12–19

    Google Scholar 

  228. Saiger M (1958) Mineralogische und sedimentpetrographische Untersuchungen am Kaolinprofil der Bohrung Kick Nr. 9 bei Schnaittenbach/Opf. Geologica Bavarica 37: 5–84

    Google Scholar 

  229. Santos de Souza P, Santos de Souza H, Brindley GW (1966) Mineralogical studies of kaolinite- halloysite clays: IV. A platy mineral with structural swelling and shrinking characteristics. Am Min 51: 1640–1648

    Google Scholar 

  230. Sawhney BL (1967) Interstratification in vermiculite. Clays Clay Min 15: 75–84

    Google Scholar 

  231. Sawhney BL, Reynolds jr RC (1985) Interstratified clays as fundamental particles: a discussion. Clays Clay Min 33: 559

    Google Scholar 

  232. Schmidt ER, Heckrodt RO (1959) A dickite with an elongated crystal habit and its dehydroxylation. Mineralog Mag 32: 314–323

    Google Scholar 

  233. Schwertmann U, Taylor RM (1989) Iron oxides. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Sci Soc of America, Madison, Wisconsin, USA, pp 379–438

    Google Scholar 

  234. Shimoda S (1969) New data on tosudite. Clays Clay Min 17: 179–184

    Google Scholar 

  235. Shirozu H (1978) Chlorite minerals. In: Sudo T, Shimoda S (eds) Clays and Clay Minerals of Japan. Elsevier, Amsterdam, pp 265–322

    Google Scholar 

  236. Singer A (1984) Pedogenic palygorskite in the arid environment. In: Singer A, Galan E (eds) Palygorskite-Sepiolite. Occurences, genesis, and uses. Developments in Sedimentology 37: 169–177. Elsevier, Amsterdam

    Google Scholar 

  237. Slade PG, Stone PA, Radoslovich EW (1985) Interlayer structures of the two-layer hydrates of Na- and Ca-vermiculites. Clays Clay Min 33: 51–61

    Google Scholar 

  238. Smith WW (1962) Weathering of some Scottish basic igneous rocks with reference to soil formation. J Soil Sci 13: 202–215

    Google Scholar 

  239. Smith JV, Yoder HS (1956) Experimental and theoretical studies of the mica polymorphs. Mineralog Mag 31: 209–235

    Google Scholar 

  240. Smykatz-Kloss W (1974) Differential thermal analysis. Application and results in mineralogy. Springer, Berlin Heidelberg New York

    Google Scholar 

  241. Springer G (1976) Faleondoite, a nickel analogue of sepiolite. Can Min 14: 407–409

    Google Scholar 

  242. Stephen I (1954) An occurence of palygorskite in the Shetland Isles. Mineralog Mag 30: 471–480

    Google Scholar 

  243. Störr M, Köster HM, Kromer H, Hilz M (1991) Minerale der Crandallit-Reihe im Kaolin von Hirschau-Schnaittenbach, Oberpfalz. Z geol Wiss 19: 677–683

    Google Scholar 

  244. Stucki JW, Golden DC, Roth CB (1984) Effects of reduction and reoxidation of structural iron on the surface charge and dissolution of dioctahedral smectites. Clays Clay Min 32: 350–356

    Google Scholar 

  245. Stucki JW, Goodman BA, Schwertmann U (eds) (1988) Iron in soils and clay minerals. NATO ASI Series, Reidel

    Google Scholar 

  246. Sudo T, Kodama H (1957) An aluminium mixed-layer mineral of montmorillonite chlorite. Z Kristallogr Kristallgeom 109: 379–387

    Google Scholar 

  247. Sudo T, Sato M (1966) Dioctahedral chlorite. In: Heller L, Weiss A (eds) Proceedings of the International Clay Conference 1966, vol 1. Israel Program for Scientific Translations, Jerusalem, pp 33–39

    Google Scholar 

  248. Suquet H, Pezerat H (1987) Parameters influencing layer stacking types in saponite and vermiculite: a review. Clays Clay Min 35: 353–362

    Google Scholar 

  249. Sykes ML, Moody JB (1978) Pyrophyllite and metamorphism in the Carolina slate belt. Am Min 63: 96–108

    Google Scholar 

  250. Taylor RM (1987) Non-silicate oxides and hydroxides. In: Newman ACD (ed) Chemistry of clays and clay minerals. Mineralogical Society London, Monograph no 6. Longman, pp 129–201

    Google Scholar 

  251. Theng BKG, Churchman GJ, Whitton JS, Claridge GGC (1984) Comparison of intercalation methods for differentiating halloysite from kaolinite. Clays Clay Min 32: 249–258

    Google Scholar 

  252. Thompson GR, Hower J (1975) The mineralogy of glauconite. Clays Clay Min 23: 289–300

    Google Scholar 

  253. Tröger WE (1959) Optische Bestimmung der gesteinsbildenden Minerale. Teil 1: Bestimmungstabellen, 3. Aufl. Schweizerbartsche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  254. Tsuzuki Y, Nagasawa K (1960) A study of the exothermic reaction of allophane. Adv Clay Sci (Tokyo) 2: 377–384

    Google Scholar 

  255. Turekian KK (1972) Chemistry of the earth. Holt, Rinehart & Winston, New York

    Google Scholar 

  256. Vali H, Köster HM (1986) Expanding behaviour, structural disorder, regular and random irregular interstratification of 2:1 layer-silicates studied by high-resolution images of transmission electron microscopy. Clay Min 21: 827–859

    Google Scholar 

  257. Veith JA, Jackson ML (1974) Iron oxidation and reduction effects on structural hydroxyl and layer charge in aqueous suspensions of micaceous vermiculites. Clays Clay Min 22: 345–353

    Google Scholar 

  258. Vogt K, Köster HM (1978) Zur Mineralogie, Kristallchemie und Geochemie einiger Montmorillonite aus Bentoniten. Clay Min 13: 25–43

    Google Scholar 

  259. Wada K (1989) Allophane and imogolite. In: Minerals in soil environments, 2nd edn. Soil Science Society of America, Madison, Wisconsin, USA, pp 1051–1988

    Google Scholar 

  260. Wada K (1961) Lattice expansion of kaolin minerals by treatment with potassium acetate. Am Min 46: 78–91

    Google Scholar 

  261. Wada K, Henmi T, Yoshinaga N, Patterson SH (1972) Imogolite and allophane formed in saprolite of basalt on Maui, Hawaii. Clays Clay Min 20: 375–380

    Google Scholar 

  262. Wada K, Yoshinaga N (1969) The structure of imogolite. Am Miner 54: 50–71

    Google Scholar 

  263. Wada K, Yoshinaga N, Yotsumoto H, Ibe K, Aida S (1970) High resolution electron micrographs of imogolite. Clay Min 8: 487–489

    Google Scholar 

  264. Walker GF (1950) Trioctahedral minerals in soil clays. Mineralog Mag 29: 72–84

    Google Scholar 

  265. Weaver CE (1976) The nature of TiO2 in kaolinite. Clays Clay Min 24: 215–218

    Google Scholar 

  266. Weaver CE (1956) The distribution and identification of mixed-layer clays in sedimentary rocks. Am Min 41: 202–221

    Google Scholar 

  267. Weaver CE, Beck KC (1977) Miocene of the S.E. United States: A model for chemical sedimentation in a peri-marine environment. Sediment Geol 17: 1–234

    Google Scholar 

  268. Weir AH, Greene-Kelly R (1962) Beidellite. Am Min 47: 137–146

    Google Scholar 

  269. Weiss A, Hofmann U (1951) Batavit. Z Naturforsch 6b: 405–409

    Google Scholar 

  270. Weiss A, Range KJ (1966) Über Titan im Gitter von Kaolin. Proc Int Clay Conf 1966 Jerusalem 1: 53–66

    Google Scholar 

  271. Westfehling R (1987) Über den Ladungsnullpunkt von Tonmineralen. Diss Univ Kiel 1987

    Google Scholar 

  272. Whittaker EJW, Zussman J (1956) The characterization of serpentine minerals by x-ray diffraction. Mineralog Mag 31: 107–126

    Google Scholar 

  273. Wise WS, Eugster HP (1964) Celadonite: synthesis, thermal stability and occurence. Am Min 49: 1031–1083

    Google Scholar 

  274. Wolfe RW, Giese jr RF (1973) A quantitative study of one-layer polytypism in the kaolin minerals. Proc Int Clay Conf 1972 Madrid, 27–33

    Google Scholar 

  275. Yada K (1971) Study of microstructure of chrysotile asbestos by high resolution electron microscopy. Acta crystallogr A 27: 659–664

    Google Scholar 

  276. Yasyrev AP (1966) Distribution of trace elements in glauconites of the Russian platform. Dokl Acad Sci USSR Earth Sci Sect 168: 197–199. Übersetzung: Dokl Akad Nauk SSSR 168: 914–916 (1968)

    Google Scholar 

  277. Yoder HS, Eugster HP (1955) Synthetic and natural muscovites. Geochim cosmochim Acta 8: 225–280

    Google Scholar 

  278. Yoder HS, Eugster HP (1954) Phlogopite synthesis and stability range. Geochim cosmochim Acta 6: 157–185

    Google Scholar 

  279. Yoshinaga N, Aomine S (1962) Allophane in some Ando soils. Soil Sci Plant Nutr (Tokyo) 8 (2): 6–13

    Google Scholar 

  280. Yoshinaga N, Aomine S (1962) Imogolite in some Ando soils. Soil Sci Plant Nutr (Tokyo) 8 (3): 22–29

    Google Scholar 

  281. Yoshinaga N, Yotsumoto H, Ibe K (1968) An electron microscopic study of soil allophane with an ordered structure. Am Min 53: 319–323

    Google Scholar 

  282. Zvyagin BB (1962) Polymorphism of double-layer minerals of the kaolinite type. Soviet Phys Crystallogr 7: 38–51

    Google Scholar 

  283. Zvyagin BB, Mishchenko KS, Shitov VA (1963) Electron diffraction data on the structures of sepiolite and palygorskite. Soviet Phys Crystallogr 8: 148–153

    Google Scholar 

  284. Zvyagin BB, Mishchenko KS, Soboleva SV (1969) Structure of pyrophyllite and talc in relation to the polytypes of mica-type minerals. Soviet Phys Crystallogr 13: 511–515

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Dr. Dietrich Steinkopff Verlag, GmbH & Co. KG Darmstadt

About this chapter

Cite this chapter

Köster, H.M., Schwertmann, U. (1993). Beschreibung Einzelner Tonminerale. In: Jasmund, K., Lagaly, G. (eds) Tonminerale und Tone. Steinkopff. https://doi.org/10.1007/978-3-642-72488-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72488-6_2

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-0923-8

  • Online ISBN: 978-3-642-72488-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics