Endothelial modulation of myocardial contraction: mechanisms and potential relevance in cardiac disease

  • A. M. Shah
  • M. J. Lewis
Conference paper


Recent studies in isolated cardiac preparations and the intact heart demonstrate that the endocardial and coronary vascular endothelium modulate myocardial contractile behaviour and cardiac pump function in a novel manner, mainly by influencing the duration of contraction and the onset of relaxation but without major effect on early systolic contractile characteristics. These effects are mediated by the release of at least two diffusible substances from endothelial cells: a) endothelium-derived relaxing factor (EDRF) which shortens contractile duration by elevating myocardial cyclic GMP, and b) a novel substance, provisionally named “endocardin”, which prolongs contractile duration.

Under physiological conditions these endothelial influences may be particularly important for relaxation and early diastolic filling events in the heart. It is possible that they could influence myocardial growth, interact with other cardiac hormones, and via EDRF inhibit platelet adhesion to endothelial surfaces. The release of the endothelial factors is regulated by stimuli such as circulating neurohumoral substances, increased flow, products of platelet aggregation, and endogenous peptides stored in endothelial cells.

Although experimental evidence is still limited, it seems likely that cardiac endothelium may play an important role in the pathophysiology of cardiac disease, e.g. overload-induced hypertrophy. The endothelium could a) influence the development of phenotype change by modulating and mediating transduction of extrinsic signals, b) contribute to contractile and other abnormalities (especially “diastolic” dysfunction) because of loss or impairment of its normal function, and c) be uniquely amenable to therapeutically useful pharmacological manipulation.

Key Words

Endothelium EDRF myocardial contraction diastole cardiac hypertrophy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen DG, Kentish JC (1985) The cellular basis of the length-tension relation in cardiac muscle. J Mol Cell Cardiol 17:821–840PubMedCrossRefGoogle Scholar
  2. 2.
    Angus JA, Cocks TM (1989) Endothelium-derived relaxing factor. Pharmac Ther 41:303–352CrossRefGoogle Scholar
  3. 3.
    Belardinelli L, Linden J, Berne RM (1989) The cardiac effects of adenosine. Prog Cardiovasc Dis 32:73–97PubMedCrossRefGoogle Scholar
  4. 4.
    Blumenthal DK, Stull JT, Gill GN (1978) Phosphorylation of cardiac troponin by guanosine 3’:5’-monophosphate-dependent kinase. J Biol Chem 253:334–336Google Scholar
  5. 5.
    Brutsaert DL (1989) The endocardium. Ann Rev Physiol 51:263–273CrossRefGoogle Scholar
  6. 6.
    Brutsaert DL, Meulemans AL, Andries LJ, Demolder MJ (1990). Ultrasound selectively destroys endocardial endothelium in isolated cardiac muscle (abstr). Eur Heart J 11 (suppl): 43Google Scholar
  7. 7.
    Brutsaert DL, Meulemans AL, Sipido KR, Sys SU (1988) Effects of damaging the endocardial surface on the mechanical performance of isolated heart muscle. Circ Res 62:358–366PubMedGoogle Scholar
  8. 8.
    Clement O, Puceat M, Vassort G (1991) Protein kinases modulate Ca sensitivity of cardiac myofilaments in rat skinned cells (abstr). J Physiol 438:96PGoogle Scholar
  9. 9.
    Cooper G (1987) Cardiocyte adaptation to chronically altered load. Ann Rev Physiol 49:501–518CrossRefGoogle Scholar
  10. 10.
    De Hert SG, Gillebert TC, Jagenau AH, Brutsaert DL (1990) Endocardial modulation of left ventricular performance depends on prevailing load (abstr). Circulation 82:111–567Google Scholar
  11. 11.
    Fort S, Lewis MJ (1992) Factors released from the coronary vascular endothelium inhibit myocardial contractile performance. Am J Physiol (in revision)Google Scholar
  12. 12.
    Fort S, Shah AM, Evans HG, Lewis MJ (1992) Endothelium-derived relaxing factor released from endocardial and coronary vascular endothelium modulates cardiac contraction. In: Moncada S, Marietta MA, Hibbs JB (eds) Biology of Nitric Oxide (in press)Google Scholar
  13. 13.
    Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376PubMedCrossRefGoogle Scholar
  14. 14.
    Furlong B, Henderson AH, Lewis MJ, Smith JA (1987) Endothelium-derived relaxing factor inhibits in vitro platelet aggregation. Br J Pharmacol 90:687–692PubMedGoogle Scholar
  15. 15.
    Gillebert TC, De Hert SG, Andries LJ, Jagenau AH, Brutsaert DL (1990) Altering endocardial function by high power ultrasound modulates ventricular performance (abstr.) Circulation 82:111–113Google Scholar
  16. 16..
    Grossman W (1990) Diastolic dysfunction and congestive heart failure. Circulation 81 (suppl. III):III-1-III-7Google Scholar
  17. 17.
    Henderson AH (1991) Endothelium in control. Br Heart J 65:116–125PubMedCrossRefGoogle Scholar
  18. 18.
    Henderson AH, Brutsaert DL (1973) An analysis of the mechanical capabilities of heart muscle during hypoxia. Cardiovasc Res 7:763–776PubMedCrossRefGoogle Scholar
  19. 19.
    Henderson AH, Brutsaert DL, Parmley WW, Sonnenblick EH (1969) Myocardial mechanics in papillary muscles of the rat and cat. Am J Physiol 217:1273–1279PubMedGoogle Scholar
  20. 20.
    Hibberd MG, Jewell BR (1982) Calcium- and length-dependent force production in rat ventricular muscle. J Physiol 329:527–540PubMedGoogle Scholar
  21. 21.
    Ishida Y, Meisner JS, Tsujiokak C, Tallo JI, Yoran C, Frater RWM, Yellin EL (1986) Left ventricular filling dynamics: influence of left ventricular relaxation and left atrial pressure. Circulation 74:187–196PubMedCrossRefGoogle Scholar
  22. 22.
    Koch-Weser J (1965) Nature of the inotropic action of angiotensin on ventricular myocardium. Circ Res 16:230–237PubMedGoogle Scholar
  23. 23.
    Lee JA, Allen DG (1989) Comparison of the effects of inotropic interventions on isometric tension and shortening in isolated ferret ventricular muscle, cardiovasc Res 23:748–755PubMedCrossRefGoogle Scholar
  24. 24.
    Li K, Calderone A, Rouleau JL (1990) Reduced myocardial alpha-adrenergic contractile responsiveness in pacing-overdrive model of heart failure in the dog: potential role of the endocardial endothelium (abstr). Eur Heart J 11 (supp):79Google Scholar
  25. 25.
    Lincoln TM, Corbin JD (1978) Purified cyclic GMP-dependent protein kinase catalyzes the phosphorylation of cardiac troponin inhibitory subunit (TN-I). J Biol Chem 253:337–339PubMedGoogle Scholar
  26. 26.
    Lincoln J, Ralevic V, Burnstock G (1991) Neurohumoral substances and the endothelium. In: Rubanyi GM (ed) Cardiovascular significance of endothelium-derived vasoactive factors; Futura, New York, pp 293–306Google Scholar
  27. 27.
    Marshall JJ, Kontos HA (1990) Endothelium-derived relaxing factors. A perspective from in vivo data. Hypertension 16:371–386PubMedGoogle Scholar
  28. 28.
    Meulemans AL, Andries LJ, Brutsaert DL (1990) Endocardial endothelium mediates positive inotropic response to alpha1-adrenoceptor agonist in mammalian heart. J Mol Cell Cardiol 22:667–685PubMedCrossRefGoogle Scholar
  29. 29.
    Meulemans AL, Andries LJ, Brutsaert DL (1990) Does endocardial endothelium mediate positive inotropic response to angiotensin I and angiotensin II. Circ Res 66:1591–1601PubMedGoogle Scholar
  30. 30.
    Meulemans AL, Demolder MJ, Brutsaert DL (1990) Endocardial endothelium mediates shear-stress-induced modulation of mechanical performance in superfused cardiac muscle (abstr). Eur Heart J 11 (suppl):79Google Scholar
  31. 31.
    Morgan HE, Baker KM (1991) Cardiac hypertrophy. Mechanical, neural, and endocrine. Circulation 83:13–25PubMedGoogle Scholar
  32. 32.
    Noronha-Dutra AA, Steen EM, Woolf N (1984) The early changes induced by isoproten-erol in the endocardium and adjacent myocardium. Am J Pathol 114:231–239PubMedGoogle Scholar
  33. 33.
    Packer M (1988) Neurohumoral interactions and adaptations in congestive heart failure. Circulation 77:721–730PubMedCrossRefGoogle Scholar
  34. 34.
    Radomski MW, Palmer RMJ, Moncada S (1987) Comparative pharmacology of end-othelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Br J Pharmacol 92:181–187PubMedGoogle Scholar
  35. 35.
    Sanchez-Ferrer CF, Burnett JC, Lorenz RR, Vanhoutte PM (1990). Possible modulation of release of atrial natriuretic factor by endothelium-derived relaxing factor. Am J Physiol 259: H982–H986PubMedGoogle Scholar
  36. 36.
    Schoemaker IE, Meulemans AL, Andries LJ, Brutsaert DL (1990) Role of the endocardial endothelium in the positive inotropic action of vasopressin. Am J Physiol 259:H1148–H1151PubMedGoogle Scholar
  37. 37.
    Scholz J, Schaefer B, Schmitz W, Scholz H, Steinfath M, Lohse M, Schwabe U, Puurunen J (1988) Alphal-adrenoceptor-mediated positive inotropic effect and inositol triphosphate increase in mammalian heart. J Pharmacol Exp Ther 245:327–335PubMedGoogle Scholar
  38. 38.
    Schulz R, Smith JA, Lewis MJ, Moncada S (1991) Nitric oxide synthase in cultured endocardial cells of the pig. Br J Pharmacol 104:21–24PubMedGoogle Scholar
  39. 39.
    Shah AM, Andries LJ, Meulemans AL, Brutsaert DL (1989) Endocardium modulates myocardial inotropic response to 5-hydroxytryptamine. Am J Physiol 257:H1790–H1797PubMedGoogle Scholar
  40. 40.
    Shah AM, Brutsaert DL, Meulemans AL, Andries LJ, Capron M (1990) Eosinophils from hypereosinophilic patients damage endocardium of isolated feline heart muscle preparations. Circulation 81:1081–1088PubMedCrossRefGoogle Scholar
  41. 41.
    Shah AM, Fort S, Siney L, Smith JA, Lewis MJ (1991) Endothelium-derived relaxing factor modulates the duration of myocardial contraction (abstr). Circulation 84 (suppl II):II-308Google Scholar
  42. 42.
    Shah AM, Lewis MJ, Henderson AH (1989) Inotropic effects of endothelin in ferret ventricular myocardium. Eur J Pharmacol 163:365–367PubMedCrossRefGoogle Scholar
  43. 43.
    Shah AM, Lewis MJ, Henderson AH (1991) Effects of 8-bromo-cyclic GMP on contraction and on inotropic response of ferret cardiac muscle. J Mol Cell Cardiol 23:55–64PubMedCrossRefGoogle Scholar
  44. 44.
    Shah AM, Meulemans AL, Brutsaert DL (1989) Myocardial inotropic responses to aggregating platelets and modulation by the endocardium. Circulation 79:1315–1323PubMedCrossRefGoogle Scholar
  45. 45.
    Shah AM, Shattock MJ, Lewis MJ (1992) Action potential duration and endocardial modulation of myocardial contraction. Cardiovasc Res 26:376–378PubMedCrossRefGoogle Scholar
  46. 46.
    Shah AM, Smith JA, Lewis MJ (1991) The role of endocardium in the modulation of contraction of isolated papillary muscles of the ferret. J Cardiovasc Pharmacol 17 (suppl 3):S251–S257CrossRefGoogle Scholar
  47. 47.
    Smith JA, Shah AM, Lewis MJ (1991) Factors released from endocardium of the ferret and pig modulate myocardial contraction. J Physiol 439:1–14PubMedGoogle Scholar
  48. 48.
    Tada M, Katz A (1982) Phosphorylation of the sarcoplasmic reticulum and sarcolemma. Ann Rev Physiol 44:401–423CrossRefGoogle Scholar
  49. 49.
    Wang J, Morgan JP (1992) Endocardial endothelium modulates myofilament Ca2+ responsiveness in aequorin-loaded ferret myocardium Circ Res 70:754–760PubMedGoogle Scholar
  50. 50.
    Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415PubMedCrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt 1992

Authors and Affiliations

  • A. M. Shah
    • 1
    • 3
  • M. J. Lewis
    • 2
  1. 1.Cardiff Cardiovascular Sciences Research Group, Departments of CardiologyUniversity of Wales College of MedicineCardiffWales (UK)
  2. 2.Pharmacology & TherapeuticsUniversity of Wales College of MedicineCardiffWales (UK)
  3. 3.Dept. of CardiologyUniversity of Wales College of MedicineCardiffUK

Personalised recommendations