Skip to main content

Coronary hemodynamic determinants of epicardial artery vasomotor responses during sympathetic stimulation in humans

  • Conference paper
Endothelial Mechanisms of Vasomotor Control

Summary

Sympathetic stimulation by cold-pressor testing induces a complex interplay between adrenergic receptor stimulation, humoral and local metabolic factors, and alterations in coronary perfusion pressure. Since the endothelium importantly modulates the effect of neurohumoral stimulation, we evaluated the coronary hemodynamic determinants of epicardial artery vasomotor responses to cold-pressor testing in 12 normal patients with intact endothelial function, and in 20 patients with early atherosclerosis, demonstrating a dysfunctional endothelium. Endothelial function was assessed by intracoronary infusion of the endothelium-dependent dilator acetylcholine. Vasomotor responses were examined by quantitative coronary angiography and continuous intracoronary flow velocity measurements using a Doppler catheter. All coronary artery segments demonstrating a dilator response to intracoronary acetylcholine also vasodilated in response to cold-pressor testing by 19.7±8.2% (mean ±1 SD). In contrast, all arteries with evidence of atherosclerosis demonstrated a vasoconstrictor response during cold pressor testing with an area reduction by 18.4±7.5%. The systemic hemodynamic variables heart rate and mean aortic pressure increased by comparable amounts in both groups of patients during cold pressor testing, indicating comparable increases in myocardial workloads. There was a significant positive relation between increases in blood flow and changes in arterial luminal area. Increases in blood flow were closely related to increases in mean aortic pressure in normal epicardial vessels, but this relation was blunted in vessels with a dysfunctional endothelium. Estimated shear stress changes within the epicardial conductance vessels were significantly lower in normal compared to atherosclerotic arteries.

Thus, the increase in coronary blood flow is an important hemodynamic determinant of epicardial artery dilation in normal arteries during cold pressor testing. On the other hand, the vasodilator response limits increases in shear stress for a given increase in blood flow. In contrast, the failure of atherosclerotic arteries to dilate, despite increased myocardial demands, exaggerates increases in local shear stress in relation to changes in flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bassenge E, Busse R (1988) Endothelial modulation of coronary tone. Progr Cardiovasc Dis 30:349–380

    Article  CAS  Google Scholar 

  2. Bossaler C, Habib GB, Yamamoto H, Williams C, Wells S, Henry PD (1987) Impaired muscarinic endothelium-dependent relaxation and cyclic guanosine 5-monophosphate formation in atherosclerotic human coronary artery and rabbit aorta. J Clin Invest 79:170–174

    Article  Google Scholar 

  3. Chester AH, O’Neil GS, Moncada S, Tadjkarimi S, Yacoub MH (1990). Low basal and stimulated release of nitric oxide in atherosclerotic epicardial coronary arteries. Lancet II:897–900

    Article  Google Scholar 

  4. Cocks TM, Angus JA (1983) Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature 305:627–630

    Article  PubMed  CAS  Google Scholar 

  5. Cohen RA, Shepherd JT, Vanhoutte PM (1983) Inhibitory role of the endothelium in the response of isolated coronary arteries to platelets. Science 221:273–274

    Article  PubMed  CAS  Google Scholar 

  6. Cornhill JF, Roach MR (1976) A quantitative study of the localization of atherosclerotic lesions in the rabbit aorta. Atherosclerosis 23:489–501

    Article  PubMed  CAS  Google Scholar 

  7. Cox DA, Vita JA, Treasure CB, Fish RD, Alexander RW, Ganz P, Selwyn AP (1989) Atherosclerosis impairs flow-mediated dilation of coronary arteries in humans. Circulation 80:458–465

    Article  PubMed  CAS  Google Scholar 

  8. Dewey CF, Bussolari SR, Gimbrone MA, Davies PF (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 103:177–185

    Article  PubMed  Google Scholar 

  9. Drexler H, Zeiher AM, Wollschläger H, Meinertz T, Just H, Bonzel T (1989) Flow-dependent coronary artery dilatation in humans. Circulation 80:466–474

    Article  PubMed  CAS  Google Scholar 

  10. Feigl EO (1987) The paradox of adrenergic coronary vasoconstriction. Circulation 76:737–745

    Article  PubMed  CAS  Google Scholar 

  11. Frangos JA, Eskin SG, McIntire LV (1985) Flow effects on prostacyclin production by cultured human endothelial cells. Science 227:1477–1479

    Article  PubMed  CAS  Google Scholar 

  12. Freiman PC, Mitchell GC, Heistad DD, Armstrong ML, Harrison DG (1986) Atherosclerosis impairs endothelium-dependent vascular relaxation to acetylcholine and thrombin in primates. Circ Res 58:783–789

    PubMed  CAS  Google Scholar 

  13. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Article  PubMed  CAS  Google Scholar 

  14. Gaglione A, Hess OM, Corin WJ, Ritter M, Grimm J, Krayenbühl HP (1987) Is there coronary vasoconstriction after intracoronary beta-adrenergic blockade in patients with coronary artery disease. J Am Coll Cardiol 10:299–310

    Article  PubMed  CAS  Google Scholar 

  15. Gordon JB, Ganz P, Nabel EG, Fish RD, Zebede J, Mudge GH, Alexander RW, Selwyn AP (1989) Atherosclerosis influences the vasomotor response of epicardial arteries to exercise. J Clin Invest 83:1946–1952

    Article  PubMed  CAS  Google Scholar 

  16. Griffith TM, Edwards DH (1990) Myogenic autoregulation of flow may be inversely related to endothelium-derived relaxing factor activity. Am J Physiol 258:H1171–H1180

    PubMed  CAS  Google Scholar 

  17. Holtz J, Förstermann U, Pohl U, Giesler M, Bassenge E (1984) Flow-dependent, endothelium-mediated dilation of epicardial coronary arteries in conscious dogs: effects of cyclooxygenase inhibition. J Cardiovasc Pharmacol 6:1161–1169

    PubMed  CAS  Google Scholar 

  18. Houston DS, Shepherd JT, Vanhoutte PM (1986) Aggregating human platelets cause direct contraction and endothelium-dependent relaxation of isolated canine coronary arteries: role of serotonin, thromboxane A2 and adenine nucleotides. J Clin Invest 78:539–544

    Article  PubMed  CAS  Google Scholar 

  19. Katusic ZS, Shepherd JT, Vanhoutte PM (1987) Endothelium-dependent contraction to stretch in canine basilar arteries. Am J Physiol 252:H671–H673

    PubMed  CAS  Google Scholar 

  20. Ku DN, Giddens DG, Zarins CK, Glagov S (1985) Pulsatile flow and atherosclerosis in human carotid bifurcation: positive correlation between plaque location and low and oscillating shear stress. Arteriosclerosis 5:293–302

    Article  PubMed  CAS  Google Scholar 

  21. Lansman JB, Hallam TJ, Rink TJ (1987) Single stretch-activated ion channels in vascular endothelial cells as mechanostransducers. Nature 325:811–813

    Article  PubMed  CAS  Google Scholar 

  22. Levesque MJ, Liepsch D, Moravec S, Nerem RM (1986) Correlation of endothelial cell shape and wall shear stress in a stenosed dog aorta. Arteriosclerosis 6:220–229

    Article  PubMed  CAS  Google Scholar 

  23. Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge GH, Alexander RW, Ganz P (1986) Paradoxical vascoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 315:1046–1051

    Article  PubMed  CAS  Google Scholar 

  24. Lutz RJ, Cannon JN, Bischoff KB, Dedrick RL, Stiles RK, Fry DL (1977) Wall shear stress distribution in a model canine artery during steady flow. Circ Res 41:391–399

    PubMed  CAS  Google Scholar 

  25. Miller VM, Vanhoutte PM (1985) Endothelium-dependent contractions to arachidonic acid are mediated by products of cyclooxygenase. Am J Physiol 248:H432–H437

    PubMed  CAS  Google Scholar 

  26. Milnor WR (1982) Hemodynamics. William & Wilkins, Baltimore, pp 49–51

    Google Scholar 

  27. Myers PR, Banitt PF, Guerra R, Harrison DG (1989) Characteristics of canine resistance arteries: importance of endothelium. Am J Physiol 247:H603–H610

    Google Scholar 

  28. Nabel EG, Ganz P, Gordon JB, Alexander RW, Selwyn AP (1988) Dilation of normal and constriction of atherosclerotic coronary arteries caused by the cold pressor test. Circulation 77:43–52

    Article  PubMed  CAS  Google Scholar 

  29. Olesen SP, Clapham DE, Davies PF (1988) Hemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 331:169–170

    Article  Google Scholar 

  30. Pohl U, Holtz J, Busse R, Bassenge E (1986) Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension 8:37–44

    PubMed  CAS  Google Scholar 

  31. Pohl U, Lamontagne D (1991) Impaired tissue perfusion after inhibition of endothelium-derived nitric oxide. Bas Res Cardiol 86 (Suppl 2):97–105

    Google Scholar 

  32. Rubanyi GM, Romero JC, Vanhoutte PM (1986) Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 250:H1145–0049

    PubMed  CAS  Google Scholar 

  33. Shimokawa H, Vanhoutte PM (1989) Impaired endothelium-dependent relaxation to aggregating platelets and related vasoactive substances in porcine coronary arteries in hyper-cholesterolemia and atherosclerosis. Circ Res 64:900–914

    PubMed  CAS  Google Scholar 

  34. Vanhoutte PM, Houston DS (1985) Platelets, endothelium, and vasospasm. Circulation 72:728–738

    Article  PubMed  CAS  Google Scholar 

  35. Vita JA, Treasure CB, Fish RD, Yeung AC, Vekshtein VI, Ganz P, Selwyn AP (1990) Endothelial dysfunction leads to increased coronary constriction to catecholamines in patients with early atherosclerosis (abstract). J Am Coll Cardiol 15:158A

    Article  Google Scholar 

  36. Vita JA, Treasure CB, Ganz P, Cox DA, Fish RD, Selwyn AP (1989) Control of shear stress in the epicardial coronary arteries of humans: impairment by atherosclerosis. J Am Coll Cardiol 14:1193–1199

    Article  PubMed  CAS  Google Scholar 

  37. Vita JA, Treasure CB, Nabel EG, McLenachan JM, Fish RD, Yeung AC, Vekshtein VI, Selwyn AP, Ganz P (1990) Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation 81:491–497

    Article  PubMed  CAS  Google Scholar 

  38. Wollschläger H, Lee P, Zeiher AM, Solzbach U, Bonzel T, Just H (1986) Improvement of quantitative angiography by exact calculation of radiological magnification factors. Comput Cardiol: 483-486

    Google Scholar 

  39. Yasue H, Matsuyama K, Matsuyama K, Okumura K, Morikami Y, Ogawa H (1990) Responses of angiographically normal human coronary arteries to intracoronary injection of acetylcholine by age and segment. Circulation 81:482–490

    Article  PubMed  CAS  Google Scholar 

  40. Young MA, Vatner SF (1986) Enhanced adrenergic constriction of iliac artery with removal of endothelium in conscious dog. Am J Physiol 250:H892–897

    PubMed  CAS  Google Scholar 

  41. Zeiher AM, Drexler H, Wollschläger H, Saurbier B, Just H (1989) Coronary vasomotion in response to sympathetic stimulation in humans: importance of the functional integrity of the endothelium. J Am Coll Cardiol 14:1181–1190

    Article  PubMed  CAS  Google Scholar 

  42. Zeiher AM, Drexler H, Wollschläger H, Just H (1991) Modulation of coronary vasomotor tone in humans: progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation 83:391–401

    PubMed  CAS  Google Scholar 

  43. Zeiher AM, Drexler H, Wollschläger H, Just H (1989) Preserved flow mediated vasodilation despite acetylcholine-induced vasoconstriction in atherosclerotic coronary arteries in man (abstract). J Am Coll Cardiol 13:132A

    Article  Google Scholar 

  44. Zeiher AM, Siegemund M, Wollschläger H, Drexler H (1990) Persistence of sympathetic-mediated constriction of epicardial arteries after local α-blockade in patients with coronary artery disease (abstract). Circulation 82 (suppl III):II–300

    Google Scholar 

  45. Zeiher AM, Schächinger V, Weitzel SH, Wollschläger H, Just H (1991) Intracoronary thrombus formation causes focal vasoconstriction of epicardial arteries in patients with coronary artery disease. Circulation (in press)

    Google Scholar 

  46. Zeiher AM, Drexler H, Wollschläger H, Just H (1990) Endothelial dysfunction alters the linkage of myocardial oxygen demand to microvascular tone in humans (abstract). Circulation 82 (suppl III):III–247

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt

About this paper

Cite this paper

Zeiher, A.M., Drexler, H. (1991). Coronary hemodynamic determinants of epicardial artery vasomotor responses during sympathetic stimulation in humans. In: Drexler, H., Zeiher, A.M., Bassenge, E., Just, H. (eds) Endothelial Mechanisms of Vasomotor Control. Steinkopff. https://doi.org/10.1007/978-3-642-72461-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72461-9_20

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-72463-3

  • Online ISBN: 978-3-642-72461-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics