Skip to main content

Interactions between nitric oxide and prostacyclin in myocardial ischemia and endothelial cell cultures

  • Conference paper
Endothelial Mechanisms of Vasomotor Control

Summary

This study investigates biochemical and functional interactions between NO and PGI2 that generate pathways in two different in vitro assays: porcine aortic endothelial cells (PAEC) and reperfused ischemic Langendorff hearts of rabbits. Using cGMP as an index of NO generation and 6-oxo-PGF as an index for PGI2 production in endothelial cells, it is demonstrated that the two metabolic pathways for NO and prostacyclin formation act independent of each other. Moreover, NO appears to have an autocrine function in endothelial cells which does not exist with PGI2, probably because of a lack of PGI2 receptors. Endothelial damage in the course of myocardial ischemia is associated with a marked increase in mediator release whose inhibition has consequences for both myocardial and coronary function: inhibition of NO formation also inhibits PGI2 release and the recovery of coronary vessel tone with only minor if any effect on myocardial contractility. In contrast, inhibition of PGI2-generation results in marked deterioration of myocardial recovery with only minor changes in coronary perfusion. It is concluded from these data that PGI2 in endothelial injury is important for preservation of myocardial function while NO might mainly be involved in control of local vessel tone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alheid U, Reichwehr I, Förstermann U (1989) Human endothelial cells inhibit platelet aggregation by separately stimulating platelet cyclic AMP and cyclic GMP. Eur J Pharmacol 164:103–110

    Article  PubMed  CAS  Google Scholar 

  2. Botting R, Vane JR (1989) The receipt and dispatch of chemical messengers by endothelial cells. Prog Clin Biol Res 301:1–11

    PubMed  CAS  Google Scholar 

  3. Evans HG, Smith JA, Lewis MJ (1988) Release of endothelium-derived relaxing factor is inhibited by 8-bromo-cyclic guanosine monophosphate. J Cardiovasc Pharmacol 12:672–677

    Article  PubMed  CAS  Google Scholar 

  4. Feelisch M, Noack EA (1987) Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase. Eur J Pharmacol 139:19–30

    Article  PubMed  CAS  Google Scholar 

  5. Friedl A, Harmening C, Schuricht B, Hamprecht B (1985) Rat atrial natriuretic peptide elevates the level of cyclic GMP in astroglia-rich brain cell cultures. Eur J Pharmacol 111:141–142

    Article  PubMed  CAS  Google Scholar 

  6. Gorman R, Bunting S, Miller O (1977) Modulation of human platelet adenylate cyclase by prostacyclin (PGX). Prostaglandins 13:377–388

    Article  PubMed  CAS  Google Scholar 

  7. Griffith TM, Edwards DH, Davies RLl, Harrison TJ, Evans KT (1988) Endothelium-derived relaxing factor (EDRF) and resistance vessels in an intact vascular bed: a microangio-graphic study of the rabbit isolated ear. Br J Pharmacol 93:654–662

    PubMed  CAS  Google Scholar 

  8. Groschner K, Holzmann S, Kukovetz W (1986) Lack of second messenger function of cyclic GMP in acetylcholine induced negative inotropism. J Cardiovasc Pharmacol 8:1154–1157

    Article  PubMed  CAS  Google Scholar 

  9. Gryglewski RJ, Moncada S, Palmer RMJ (1986) Bioassay of prostacyclin and endothelium-derived relaxing factor (EDRF) from porcine aortic endothelial cells. Br J Pharmacol 87:685–694

    PubMed  CAS  Google Scholar 

  10. Halushka PV, Mais DE, Mayeux PR, Morinelli TA (1989) Thromboxane, prostaglandin and leukotriene receptors. Ann Rev Pharmacol Toxicol 29:213–239

    Article  CAS  Google Scholar 

  11. Haussmann HJ, Werringloer J (1985) Oxidative denitrosation and activation of N-nitrosodimethylamine. Biochem Pharmacol 34:411–412

    Article  CAS  Google Scholar 

  12. Holzmann S (1982) Endothelium-induced relaxation by acetylcholine associated with larger rises in cyclic GMP in coronary arterial strips. J Cyclic Nucleotide Protein Phosphor Res 8:409–419

    CAS  Google Scholar 

  13. Hopkins NK, Gorman RR (1981) Regulation of endothelial cells cyclic nucleotide metabolism by prostacyclin. J Clin Invest 67:540–546

    Article  PubMed  CAS  Google Scholar 

  14. Inoue T, Tomoike H, Hisano K, Nakamura M (1988) Endothelium determines flow-dependent dilation of the epicardial coronary artery in dogs. J Am Coll Cardiol 11:187–191

    Article  PubMed  CAS  Google Scholar 

  15. Kelm M, Feelisch M, Spahr R, Piper HM, Noack E, Schrader J (1988) Quantitative and kinetic characterization of nitric oxide and EDRF released from cultured endothelial cells. Biochem Biophys Res Commun 154:236–244

    Article  PubMed  CAS  Google Scholar 

  16. Kelm M, Schrader J (1988) Nitric oxide release from the isolated guinea pig heart. Eur J Pharmacol 155:317–321

    Article  PubMed  CAS  Google Scholar 

  17. Kelm M, Schrader J (1990) Control of coronary vascular tone by nitric oxide. Circ Res 66:1561–1575

    PubMed  CAS  Google Scholar 

  18. Kukovetz WR, Holzmann S, Schmidt K (1988) Freisetzung von EDRF durch Kaliumionen, Bradykinin and Kalzium-Ionophor (A23187) aus Endothelzellen. CorVas 4:163–168

    Google Scholar 

  19. Martin W, White DG, Henderson AH (1988) Endothelium-derived relaxing factor and atriopeptin II elevate cyclic GMP levels in pig aortic endothelial cells. Br J Pharmacol 93:229–239

    PubMed  CAS  Google Scholar 

  20. Moncada S, Palmer RMJ, Higgs EA (1987) Prostacyclin and endothelium-derived relaxing factor: biological interactions and significance. In: Verstraete M, Vermylen J, Lijnen R, Arnout J (eds) Thrombosis and haemostasis. Leuven University Press, Leuven, pp 587–618

    Google Scholar 

  21. Moncada S, Radomski MW, Palmer RMJ (1988) Endothelium-derived relaxing factor. Identification as nitric oxide and role in the control of vascular tone and platelet function. Biochem Pharmacol 37:2495–2501

    CAS  Google Scholar 

  22. Mülsch A, Böhme E, Busse R (1987) Stimulation of soluble guanylate cyclase by endothelium-derived relaxing factor from cultured endothelial cells. Eur J Pharmacol 135:247–250

    Article  PubMed  Google Scholar 

  23. Mülsch A, Busse R (1990) NG-nitro-L-arginine (N5-[imino-(nitroamino)methyl]-l-ornithine) impairs endothelium-dependent dilations by inhibiting cytosolic nitric oxide synthesis from L-arginine. Naunyn-Schmiedeberg’s Arch Pharmacol 341:143–147

    Google Scholar 

  24. Ogura A, Ozaki K, Kudo Y, Amano T (1986) Cytosolic calcium elevation and cGMP production induced by serotonin in a clonal cell of glial origin. J Neurosci 6:2489–2494

    PubMed  CAS  Google Scholar 

  25. Palmer RMJ, Rees DD, Ashton DS, Moncada S (1988) l-Arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Biophys Res Commun 153:1251–1256

    Article  PubMed  CAS  Google Scholar 

  26. Schafer AI, Gimbrone MA Jr, Handin RI (1980) Endothelial cell adenylate cyclase: activation by catecholamines and prostaglandin I2. Biochem Biophys Res Commun 96:1640–1647

    Article  PubMed  CAS  Google Scholar 

  27. Schröder H, Leitman DC, Bennett BM, Waldman SA, Murad F (1988) Glyceryl trinitrateinduced desensitization of guanylate cyclase in cultured rat lung fibroblasts. J Pharmacol Exp Ther 245:413–418

    PubMed  Google Scholar 

  28. Schröder H, Machunsky C, Strobach H, Schrör K (1990) Nitric oxide but not prostacyclin has an autocrine function in porcine aortic endothelial cells. Adv Prostaglandin Thromboxane Leukotriene Res 21:671–674

    Google Scholar 

  29. Schröder H, Ney P, Woditsch I, Schrör K (1990) Cyclic GMP mediates SIN-1-induced inhibition of human polymorphonuclear leukocytes. Eur J Pharmacol 182:211–218

    Article  PubMed  Google Scholar 

  30. Schröder H, Schrör K (1989) Cyclic GMP stimulation by vasopressin in LLc-PK1 kidney epithelial cells is l-arginine-dependent. Naunyn-Schmiedeberg’s Arch Pharmacol 340:475–477

    Article  Google Scholar 

  31. Schrör K, Darius H, Addicks K, Köster R, Smith EF III (1982) PGI2 prevents ischaemia-induced alterations in cardiac catecholamines without influencing nerve-stimulation induced catecholamine release in non-ischaemic conditions. J Cardiovasc Pharmacol 4:741–748

    Article  PubMed  Google Scholar 

  32. Schrör K, Förster S, Woditsch I, Schröder H (1989) Generation of NO from molsidomine (SIN-1) in vitro and its relationship to changes in coronary vessel tone. J Cardiovasc Pharmacol 14:(suppl 1)S29–S34

    PubMed  Google Scholar 

  33. Schrör K, Funke K (1985) Prostaglandins and myocardial noradrenaline overflow after sympathetic nerve stimulation during ischemia and reperfusion. J Cardiovasc Pharmacol 7:(suppl 5)S50–S54

    Article  PubMed  Google Scholar 

  34. Schrör K, Seidel H (1988) Blood vessel-wall arachidonate acid metabolism and its pharmacological modification in a new in vitro assay system. Naunyn-Schmiedeberg’s Arch Pharmacol 337:177–182

    Article  Google Scholar 

  35. Steiner AL, Parker CW, Kipnis DM (1972) Radioimmunoassay for cyclic nucleotides. J Biol Chem 247:1106–1113

    PubMed  CAS  Google Scholar 

  36. Stuehr DJ, Nathan CF (1989) Nitric oxide — a macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med 169:1543–1555

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt

About this paper

Cite this paper

Schrör, K., Woditsch, I., Strobach, H., Schröder, H. (1991). Interactions between nitric oxide and prostacyclin in myocardial ischemia and endothelial cell cultures. In: Drexler, H., Zeiher, A.M., Bassenge, E., Just, H. (eds) Endothelial Mechanisms of Vasomotor Control. Steinkopff. https://doi.org/10.1007/978-3-642-72461-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72461-9_13

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-72463-3

  • Online ISBN: 978-3-642-72461-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics