Skip to main content

Myokardstoffwechsel bei Ischämie

  • Conference paper

Zusammenfassung

Bei Ischämie treten ausgedehnte Störungen des Myokardstoffwechsels auf, die insbesondere die Kohlenhydrate und Lipide betreffen. Abhängig von der Dauer einer Ischämie können derartige Veränderungen reversibel oder irreversibel sein; letztere stellen dann wohl einen Myokardinfarkt dar. Der Schwerpunkt dieses Kapitels liegt auf den frühen, nach Koronararterienverschluß einsetzenden Stoffwechselstörungen im Myokard; zusätzlich soll kurz auf das Problem von Reperfusionsschäden eingegangen werden.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Allen DG (1988) Does calcium play a role in early ischemic injury? J Mol Cell Cardiol 20 ( Suppl V ): S1

    Google Scholar 

  2. Allen DG, Lee JA, Smith GL (1988) The effects of simulated ischemia on intracellular calcium and tension in isolated ferret ventricular muscle. J Physiol 440: 91 P

    Google Scholar 

  3. Ambrosio G, Weisfeldt ML, Jacobus WE, Flaherty JT (1987) Evidence for a reversible oxygen radical-mediated component of reperfusion injury: reduction by recombinant human superoxide dismutase administered at the time of reflow. Circulation 75: 282–291

    Article  PubMed  CAS  Google Scholar 

  4. Apstein CS, Grossman W (1987) Opposite initial effects of supply and demand ischemia on left ventricular diastolic compliance: the ischemia-diastolic paradox. J Mol Cell Cardiol 19: 119–128

    Article  PubMed  CAS  Google Scholar 

  5. Araujo LI, Camici P, Spinks TJ, Jones T, Maseri A (1988) Abnormalities in myocardial metabolism in patients with unstable angina as assessed by positron emission tomography. Cardiovasc Drugs Ther 2: 41–46

    Article  PubMed  CAS  Google Scholar 

  6. Armiger LC, Gavin JB, Herdson PB (1974) Mitochondrial changes in dog myocardium induced by neutral lactate in vivo. Lab Invest 31: 29–33

    PubMed  CAS  Google Scholar 

  7. Bittl JA, Balschi JA, Ingwall JS (1987) Contractile failure and high-energy phosphate turnover during hypoxia: 31P-NMR surface coil studies in living rat. Circ Res 60: 871–878

    PubMed  CAS  Google Scholar 

  8. Bolli R, Patel BS, Jeroudi MO, Lai EK, McCay PB (1988) Demonstration of free radical generation in “stunned” myocardium of intact dogs with the use of the spin trap a-phenyl N-tertbutyl nitrone. J Clin Invest 82: 476–485

    Article  PubMed  CAS  Google Scholar 

  9. Bowman RH (1966) Effects of diabetes, fatty acids and ketone bodies on tricarboxylic acid cycle metabolism in the perfused rat heart. J Biol Chem 241: 3041–3048

    PubMed  CAS  Google Scholar 

  10. Bricknell OL, Opie LH (1978) Effects of substrates on tissue metabolic changes in the isolated rat heart during underperfusion and on release of lactate dehydrogenase and arrhythmias during reperfusion. Circ Res 43: 102–115

    PubMed  CAS  Google Scholar 

  11. Chance B (1976) Pyridine nucleotide as an indicator of the oxygen requirements for energy-linked functions of mitochondria. Circ Res (Suppl I): 31–38

    Google Scholar 

  12. Clusin WT (1987) What is the solution to sudden cardiac death: calcium modulation or arrhythmia clinics? Cardiovasc Drugs Ther 1: 335–342

    Article  PubMed  CAS  Google Scholar 

  13. Coetzee WA, Dennis SC, Opie LH, Muller CA (1987) Calcium channel blockers and early ischemic ventricular arrhythmias: electrophysiological versus anti-ischemic effects. J Mol Cell Cardiol 19 (Suppl II): 77–97

    Article  PubMed  CAS  Google Scholar 

  14. Corr PB, Gross RW, Sobel BE (1982) Arrhythmogenic amphiphilic lipids and the myocardial cell membrane. Editorial. J Mol Cell Cardiol 14: 619–626

    Google Scholar 

  15. Eisner DA, Nichols CG, O’Neill SC, Smith GL, Valdeolmillos M (1989) The effects of metabolic inhibition on intracellular calcium and pH in isolated rat ventricular cells. J Physiol 411: 393–418

    PubMed  CAS  Google Scholar 

  16. Evans CL, de Graff AC, Kosaka T, Mackenzie K, Murphy GE, Vacek T, Williams DH, Young FG (1933) The utilization of blood sugar and lactate by the heart-lung preparation. J Physiol (Lond) 80: 21–40

    CAS  Google Scholar 

  17. Gallagher KP, Buda AJ, Pace D, Gerren RA, Shlafer M (1986) Failure of superoxide dismutase and catalase to alter size of infarction in conscious dogs after 3 hours of occlusion followed by reperfusion. Circulation 73: 1065–1076

    Article  PubMed  CAS  Google Scholar 

  18. Gevers W (1977) Generation of protons by metabolic processes in heart cells. J Mol Cell Cardiol 9: 867–874

    Article  PubMed  CAS  Google Scholar 

  19. Harris AS, Bisteni A, Russell RA, Brigham JC, Firestone JE (1954) Excitatory factors in ventricular tachycardia resulting from myocardial ischemia. Science 119: 200–203

    Article  PubMed  CAS  Google Scholar 

  20. Hearse DJ (1979) Oxygen deprivation and early myocardial contractile failure: a reassessment of the possible role of adenosine triphosphate. Am J Cardiol 44: 1115–1121

    Article  PubMed  CAS  Google Scholar 

  21. Hearse DJ, Tosaki A (1987) Free radicals and reperfusion-induced arrhythmias: protection by spin-trap agent PBN in the rat heart. Circ Res 60: 375–383

    PubMed  CAS  Google Scholar 

  22. Horak AR, Opie LH (1983) Energy metabolism of the heart in catecholamine-induced myocardial injury. Concentration-dependent effect of epinephrine on enzyme release, mechanical function, and “oxygen-wastage”. In: Chazov E, Saks V, Rona G (eds) Horak AR, Opie LH 4. Plenum Publishing Corporation

    Google Scholar 

  23. Isoyama S, Apstein CS, Wexler LF, Grice WN, Lorell BH (1987) Acute decrease in left ventricular diastolic chamber distensibility during simulated angina in isolated hearts. Circ Res 61: 925–933

    PubMed  CAS  Google Scholar 

  24. Jennings RB, Reimer KA, Steenbergen C (1986) Myocardial ischemia revisited. The osmolar load, membrane damage, and reperfusion. J Mol Cell Cardiol 18: 769–780

    Google Scholar 

  25. Jolly SR, Kane WJ, Bailie MB, Abrams GD, Lucchesi BR (1984) Canine myocardial reperfusion injury. Its reduction by the combined administration of superoxide dismutase and catalase. Circ Res 54: 277–285

    Google Scholar 

  26. Kammermeier H, Schmidt P, Jüngling E (1982) Free energy change of ATP-hydrolysis: a causal factor of early hypoxic failure of the myocardium. J Mol Cell Cardiol 14: 267–277

    Article  PubMed  CAS  Google Scholar 

  27. Kapelko VI, Kupriyanov VV, Novikova NA, Lakomkin VL, Steinschneider AYa, Severina MYu, Veksler VI, Saks VA (1988) The cardiac contractile failure induced by chronic creatine and phosphocreatine deficiency. J Mol Cell Cardiol 20: 465–479

    Article  PubMed  CAS  Google Scholar 

  28. Katz AM, Hecht HH (1969) The early “pump” failure of the ischemic heart. Am J Med 47: 497–502

    Article  PubMed  CAS  Google Scholar 

  29. Kentish JC (1986) The effects of inorganic phosphate and creatine phosphate on force production in skinned muscles from rat ventricle. J Physiol 370: 585–604

    PubMed  CAS  Google Scholar 

  30. Krause EG, Wollenberger A (1980) Cyclic nucleotides in heart in acute myocardial ischemia and hypoxia. Adv Cycl Nucl Res 12: 49–61

    CAS  Google Scholar 

  31. Lawson JWR, Uyeda K (1987) Effects of insulin and work on fructose 2,6-bisphosphate content and phosphofructokinase activity in perfused rat hearts. J Biol Chem 262: 3165–3173

    PubMed  CAS  Google Scholar 

  32. Lee H-C, Smith N, Mohabir R, Clusin WT (1987) Cytosolic calcium transients from the beating mammalian heart. Proc Natl Acad Sci USA 84: 7793–7797

    Article  PubMed  CAS  Google Scholar 

  33. Lubbe WF, Podzuweit T, Daries P, Opie LH (1978) The role of cyclic adenosine monophosphate in adrenergic effects on vulnerability to fibrillation in the isolated perfused rat heart. J Clin Invest 61: 1260–1269

    Article  PubMed  CAS  Google Scholar 

  34. Lucchesi BR, Romson JL, Jolly SR (1984) Do leukocytes influence infarct size? In: Hearse DJ, Yellon DM (eds) Therapeutic Approaches to Myocardial Infarct Size Limitation. Raven Press, New York, pp 219–248

    Google Scholar 

  35. Marban E, Kitakaze M, Chacko VP, Pike MM (1988) Cat+ transients in perfused hearts revealed by gated 19F NMR spectroscopy. Circ Res 63: 673–678

    PubMed  CAS  Google Scholar 

  36. Mochizuki S, Kobayashi K, Neely JR (1978) Effects of L-lactate on glyceraldehyde 3-P dehydrogenase in heart muscle. In: Kobayashi T, Ito Y, Rona G (eds) Recent Advances in Cardiac Structure and Metabolism, Vol 12. Cardiac Adaptation. University Park Press, Baltimore, pp 175–182

    Google Scholar 

  37. Morgan HE, Henderson MJ, Regen DM, Park CR (1961) Regulation of glucose uptake in muscle. I. The effects of insulin and anoxia on glucose transport and phosphorylation in the isolated, perfused heart of normal rats. J Biol Chem 236: 253–261

    Google Scholar 

  38. Muller CA, Opie LH, Hamm CW, Peisach M, Gihwala D, Steyn JM, Basset HM (1986) Prevention of ventricular fibrillation by metoprolol in a pig model of acute myocardial ischemia: absence of a major arrhythmogenic role for cyclic AMP. J Mol Cell Cardiol 18: 375–387

    Article  PubMed  CAS  Google Scholar 

  39. Neill WA, Ingwall JS (1986) Stabilization of a derangement in adenosine triphosphate metabolism during sustained, partial ischemia in the dog heart. J Am Coll Cardiol 8: 894–900

    Article  PubMed  CAS  Google Scholar 

  40. Newsholme EA, Randle PJ (1961) Regulation of glucose uptake by muscle. 5. Effects of anoxia, insulin, adrenaline and prolonged starving on concentrations of hexose phosphates in isolated rat diaphragm and perfused isolated heart. Biochem J 80: 655–662

    Google Scholar 

  41. Opie LH (1969) Metabolism of the heart in health and disease. Part II. Am Heart J 77: 100–122

    Article  PubMed  CAS  Google Scholar 

  42. Opie LH (1971/72) Substrate utilization and glycolysis in the heart. Cardiology 56:2–21

    Google Scholar 

  43. Opie LH (1975) Metabolism of free fatty acids, glucose and catecholamines in acute myocardial infarction. Am J Cardiol 36: 938–953

    Article  PubMed  CAS  Google Scholar 

  44. Opie LH (1976) Effects of regional ischemia on metabolism of glucose and fatty acids. Relative rates of aerobic and anaerobic energy production during myocardial infarction and comparison with effects of anoxia. Circ Res 38: 52–74

    Google Scholar 

  45. Opie LH (1984) The heart: physiology, metabolism, pharmacology and therapy. Grune and Stratton, London, p 354

    Google Scholar 

  46. Opie LH, Muller CA, Lubbe WF (1978) Cyclic AMP and arrhythmias revisited. Lancet 11:921 —923

    Google Scholar 

  47. Opie LH, Nathan D, Lubbe WF (1979) Biochemical aspects of arrhythmogenesis and ventricular fibrillation. Am J Cardiol 43: 131–148

    Article  PubMed  CAS  Google Scholar 

  48. Opie LH, Coetzee WA (1988) Role of calcium ions in reperfusion arrhythmias: relevance to pharmacologic intervention. Cardiovasc Drugs Ther 2: 623–636

    Article  PubMed  CAS  Google Scholar 

  49. Opie LH, Coetzee WA (1988) Role of calcium ions in reperfusion arrhythmias: relevance to pharmacologic intervention. Cardiovasc Drugs Ther 2: 623–636

    Article  PubMed  CAS  Google Scholar 

  50. Owen P, Dennis S, Opie LH (1990) Glucose flux rate regulates onset of ischemic contracture in globally underperfused rat hearts. Circ Res 66: 344–354

    PubMed  CAS  Google Scholar 

  51. Pasteur L (1876) Ganthier-Villars, Paris

    Google Scholar 

  52. Podzuweit T, Dalby AJ, Cherry GW, Opie LH (1978) Cyclic AMP levels in ischaemic and nonischaemic myocardium following coronary artery ligation: relation to ventricular fibrillation. J Mol Cell Cardiol 10: 81–94

    Article  PubMed  CAS  Google Scholar 

  53. Rahimtoola SH (1989) The hibernating myocardium. Am Heart J 117: 211–221

    Article  PubMed  CAS  Google Scholar 

  54. Rovetto MJ, Lamberton WF, Neely JR (1975) Mechanism of glycolytic inhibition in ischemic rat hearts. Circ Res 37: 742–751

    PubMed  CAS  Google Scholar 

  55. Schaper W, Binz K, Sass S, Winkler B (1987) Influence of collateral blood flow and of variations in MVO2 on tissue ATP content in ischemic and infarcted myocardium. J Mol Cell Cardiol 19: 19–37

    Article  PubMed  CAS  Google Scholar 

  56. Schömig A, Dart AM, Dietz R, Mayer E, Kübler W (1984) Release of endogenous catecholamines in the ischemic myocardium of the rat. Part A. Locally mediated release. Circ Res 55: 689–701

    Google Scholar 

  57. Schömig A, Dart AM, Dietz R, Mayer E, Kübler W (1984) Release of endogenous catecholamines in the ischemic myocardium of the rat. Part A. Locally mediated release. Circ Res 55: 689–701

    Google Scholar 

  58. Serur JR, Urschel CW, Sonnenblick EH, LaRaia PJ (1976) Experimental myocardial ischemia: III. Protective effect of glucose on myocardial function. J Mol Cell Cardiol 8: 521–531

    Article  PubMed  CAS  Google Scholar 

  59. Taegtmeyer H (1978) Metabolic responses to cardiac hypoxia. Increased production of succinate by rabbit papillary muscles. Circ Res 43: 808–815

    PubMed  CAS  Google Scholar 

  60. Tennant R (1935) Factors concerned in the arrest of contraction in an ischemic myocardial area. Am J Physiol 113: 677–682

    CAS  Google Scholar 

  61. Thandroyen FT, Higginson LM, Opie LH, Yon E (1986) The influence of verapamil and its isomers on vulnerability to ventricular fibrillation during acute myocardial ischemia and adrenergic stimulation in isolated rat heart. J Mol Cell Cardiol 18: 645–649

    Article  PubMed  CAS  Google Scholar 

  62. Trach V, Buschmans-Denkel E, Schaper W (1986) Relation between lipolysis and glycolysis during ischemia in the isolated rat heart. Basic Res Cardiol 81: 454–464

    Article  PubMed  CAS  Google Scholar 

  63. Uraizee A, Reimer KA, Murry CE, Jennings RB (1987) Failure of superoxide dismutase to limit size of myocardial infarction after 40 minutes of ischemia and 4 days of reperfusion in dogs. Circulation 75: 1237–1248

    Article  PubMed  CAS  Google Scholar 

  64. Van der Vusse GJ, Roemen ThHM, Prinzen FW, Coumans WA, Reneman RS (1982) Uptake and tissue content of fatty acids in dog myocardium under normoxic and ischemic conditions. Circ Res 50: 538–546

    PubMed  Google Scholar 

  65. Vogel WM, Apstein CS, Briggs LL, Gaasch WH, Ahn J (1982) Acute alterations in left ventricular chamber stiffness. Role of the “erectile” effect of coronary arterial pressure and flow in normal and damaged hearts. Circ Res 51: 465–478

    Google Scholar 

  66. Watanabe H, Nagao B, Nishiyama T, Kamikawa T, Kobayashi A, Yamazaki N (1986) The changes of free radicals in myocardial mitochondria during ischemia and reperfusion. J Mol Cell Cardiol 18 (Suppl 1): 114

    Article  Google Scholar 

  67. Weiss J, Hiltbrand B (1985) Functional compartmentation of glycolytic versus oxidative metabolism in isolated rabbit heart. J Clin Invest 75: 436–447

    Article  PubMed  CAS  Google Scholar 

  68. Wiesner RJ, Deussen A, Borst M, Schrader J, Grieshaber MK (1989) Glutamate degradation in the ischemic dog heart: contribution to anaerobic energy production. J Mol Cell Cardiol 21: 49–59

    Article  PubMed  CAS  Google Scholar 

  69. Wiggers CJ (1934) Physiology in health and disease. Lea and Febiger, Philadelphia, p 568

    Google Scholar 

  70. Wilde AAM, Peters RJG, Janse MJ (1988) Catecholamine release and potassium accumulation in the isolated globally ischemic rabbit heart. J Mol Cell Cardiol 20: 887–896

    Article  PubMed  CAS  Google Scholar 

  71. Williamson JR, Safer B, Rich T, Schaffer S, Kobayashi K (1976) Effects of acidosis on myocardial contractility and metabolism. Acta Med Scand 587 (Suppl): 95–112

    CAS  Google Scholar 

  72. Wissner SB (1974) The effect of excess lactate upon the excitability of the sheep Purkinje fiber. J Electrocardiol 7: 17–26

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Dr. Dietrich Steinkopff Verlag, GmbH & Co. KG, Darmstadt

About this paper

Cite this paper

Opie, L.H. (1990). Myokardstoffwechsel bei Ischämie. In: Heusch, G. (eds) Pathophysiologie und rationale Pharmakotherapie der Myokardischämie. Steinkopff. https://doi.org/10.1007/978-3-642-72437-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72437-4_3

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-72438-1

  • Online ISBN: 978-3-642-72437-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics