Advertisement

Vitamine pp 11-89 | Cite as

Wasserlösliche Vitamine

  • Karl Heinz Bässler
Chapter
  • 67 Downloads

Zusammenfassung

Schon seit der Entdeckung eines wachstumsfördernden, lipidlöslichen Faktors aus Butter und Eigelb durch McCollum und Davis im Jahre 1913, der zuerst als „fat soluble A“ bezeichnet wurde, werden fettlösliche und wasserlösliche Vitamine unterschieden. Während die wasserlöslichen B-Vitamine Vorstufen von Coenzymen sind, deren Wirkungsmechanismen gut bekannt sind, läßt sich für die fettlöslichen Vitamine kein einheitlicher Wirkungsmechanismus aufzeigen. In diesem Abschnitt soll zunächst auf die wasserlöslichen Vitamine eingegangen werden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Anderson BB, Saary M, Stephens AD, Perry GM, Lersundi IC, Horn JE (1976) Effect of riboflavin on red-cell metabolism of vitamin B6. Nature 264: 574PubMedCrossRefGoogle Scholar
  2. 2.
    Foy H, Kondi A, Verjee ZH (1972) J Nutr 102: 571PubMedGoogle Scholar
  3. 3.
    Glatzle D, Weber F, Wiss O (1968) Experientia 24: 1122PubMedCrossRefGoogle Scholar
  4. 4.
    Glatzle D, Körner WF, Christeller S (1970) Int J Vitam Res 40: 166Google Scholar
  5. 5.
    Jusko WJ, Levy G (1975) In: Rivlin RS (ed) Riboflavin. Plenum Press, New York, pp 99-152Google Scholar
  6. 6.
    Lakshmi AV, Bamji MS (1976) Nutrition Metab 20: 228CrossRefGoogle Scholar
  7. 7.
    Nutrition Reviews (1984) Metabolism of riboflavin in rat and man. Nutr Rev 42: 294–296Google Scholar
  8. 8.
    Rivlin RS (1984) Riboflavin. In: Olson RE, Broquist HP, Chichester CO, Darby WJ, Kolbye AC jr., Stalvey RM (eds) Present knowledge in nutrition. The Nutrition Foundation. Inc Washington D.C., pp 285–302Google Scholar

Literatur

  1. 1.
    Bender DA (1983) Effects of dietary excess of leucine on the metabolism of tryptophan in the rat. A mechanism for the pellagragenic action of leucine. Br J Nutr 50: 25–32PubMedCrossRefGoogle Scholar
  2. 2.
    Cook NE, Carpenter KJ (1987) Leucine excess and niacin status in rats. J Nutr 117: 519–526PubMedGoogle Scholar
  3. 3.
    Darby WJ, McNutt KW, Todhunter EN (1975) Niacin. Nutr Rev 33: 289–297CrossRefGoogle Scholar
  4. 4.
    Gopalan C, Rao KSJ (1975) Pellagra and amino acid imbalance. Vit Horm 33: 505–528CrossRefGoogle Scholar
  5. 5.
    Grunicke H, Keller HJ, Liersch M, Benaguid A (1974) New Aspects of the Mechanism and Regulation of Pyridine Nucleotide Metabolism. In: Weber G (ed) Advances in Enzyme Regulation 12. Verlag Oxford, New York, p 397Google Scholar
  6. 6.
    Leklem JE, Brown RR, Rose DP, Linkswiler H, Arend RA (1975) Metabolism of tryptophan and niacin in oral contraceptive users receiving controlled intakes of vitamin B6. Am J Clin Nutr 28: 146–161PubMedGoogle Scholar
  7. 7.
    Mason JB, Kodicek E (1970) The metabolism of niacytin in the rat. Biochm J 120: 515–521Google Scholar
  8. 8.
    Mason JB, Gibson N, Kodicek E (1973) The chemical nature of the bound nicotinic acid of wheat bran: studies of nicotinic acid-containing macromolecules. Brit J Nutr 30: 297–311PubMedCrossRefGoogle Scholar
  9. 9.
    Miller LT, Linkswiler H (1967) Effect of protein intake on the development of abnormal trystophan metabolism by men duning vitamin B6 depletion. J Nutr 93: 53–59PubMedGoogle Scholar
  10. 10.
    Nomenclature Policy (1979) Generic, Descritpors and Trivial Names for Vitamins and Related Compounds. J Nutr 109: 8–15Google Scholar
  11. 11.
    National Research Council (1954) Methods for evaluation of nutritional adequacy and status. A Symposium. National Academy of Sciences, Washington D.C.Google Scholar
  12. 12.
    Rao BSN, Gopalan C (1984) Niacin. In: Presend Knowledge in Nutrition, 5th eds. The Nutrition Foundation Inc. Washington D.C, pp 318–331Google Scholar
  13. 13.
    Sauberlich HE, Skala JH, Dowdy RP (1974) Laboratory Tests for the Assessment of Nutritional Status. CRC Press, Cleveland/OhioGoogle Scholar

Literatur

  1. 1.
    Bässler KH (1987) Megavitamin therapy with pyridoxine. Int J Vit Nutr Res 58: 105–118Google Scholar
  2. 2.
    Coursin DB (1975) Symposium on frontiers of human nutrition in relation to milk, Vitamin B6 (pyridoxine) in milk. Q Rev Pediatr 10: 2Google Scholar
  3. 3.
    Ellis J, Folkers K, Levy M, Takemura K, Shizukuishi S, Ulrich R, Harrison P (1981) Therapy with vitamin B6 with and without surgery for treatment of patients having the idiopathic carpal tunnel syndrome. Res Comm Chem Pathol Pharmacol 33: 331–344Google Scholar
  4. 4.
    Folkers K, Shizukuishi S, Willis R, Scudder SL, Takemura K, Longenecker JB (1984) The biochemistry of vitamin B6 is basic to the cause of the Chinese restaurant syndrome. Hoppe Seylers Z Physiol Chem 365: 405–414PubMedCrossRefGoogle Scholar
  5. 5.
    Gregory JF, Kirck JR (1981) The biovailability of vitamin B6 in foods. Nutr Rev 39: 1–8PubMedGoogle Scholar
  6. 6.
    Gunn ADG (1985) Vitamin B6 and the premenstrual syndrome. In: Hanck A, Hornig D (eds) Int J Vit Nutr Res Suppl 27: 213-224Google Scholar
  7. 7.
    Henderson LM (1984) Vitamin B6. In: Olson RE, Broquist HP, Chichester CO, Darby WJ, Kolby AC jr. Stalvey RM (eds) Present Knowledge in Nutrition, 5th edn.: The Nutrition Foundation Inc., Washington D.C. pp 302–317Google Scholar
  8. 8.
    Kirksey A, West KD (1978) In: Human Vitamin B6 requirements. National Academy of Sciences, Washington D.C. p 238Google Scholar
  9. 9.
    Leinert J, Simon I, Hötzel D (1982) Int J Vit Nutr Res 52: 24Google Scholar
  10. 10.
    Nutrition Reviews (1979) Übersicht: The role of growth hormone in the action of vitamin B6 on cellular transfer of amino acids. Nutr Rev 37: 300–301Google Scholar
  11. 11.
    Nutrition Reviews (1987) Übersicht: Dietary protein and vitamin B6 requirements. Nutr Rev 45: 23–25Google Scholar
  12. 12.
    Sauberlich HE (1984) Ann Rev Nutr 4: 377CrossRefGoogle Scholar
  13. 13.
    Spector R, Greenwald LL (1978) Transport and metabolism of vitamin B6 in rabbit brain and choroid plexus. J Biol Chem 253: 2373–2379PubMedGoogle Scholar
  14. 14.
    Tews JK, Lowell RA (1967) J Neurochem 14: 1PubMedCrossRefGoogle Scholar

Literatur

  1. 1.
    Fry PC, Fox HM, Tao HG (1976) J Nutr Sci Vitaminol 22: 339PubMedCrossRefGoogle Scholar
  2. 2.
    Hodges RE, Bean WB, Ohlson MA, Bleiler B (1959) J Clin Invest 38: 1421PubMedCrossRefGoogle Scholar
  3. 3.
    Hötzel D (1982) Problematische Vitamine und gefährdete Gruppen. In: Schlierf G, Wolfram G (Hrsg) Mangelernährung in Mitteleuropa? Wissenschaftliche Verlagsgesellschaft, Stuttgart, S 85–97Google Scholar
  4. 4.
    Johnson NE, Nitzke S (1975) Home Econ Res J 3: 241CrossRefGoogle Scholar
  5. 5.
    Karnitz LM, Gross CJ, Henderson LM (1984) Biochim Biophys Acta 769: 486PubMedCrossRefGoogle Scholar
  6. 6.
    Olson RE (1984) Pantothenic Acid. In: Present Knowledge in Nutrition, 5th edn. The Nutrition Foundation Inc., Washington D.C. pp 377–382Google Scholar
  7. 7.
    Pietrzik K, Hötzel D (1979) Bibliotheca Nutr Dieta 28: 167: Karger, BaselGoogle Scholar
  8. 8.
    Pietrzik K, Hornig D (1980) Int J Vit Nutr Res 50: 283Google Scholar

Literatur

  1. 1.
    Bonjour JP (1977) Int J Vit Nutr Res 47: 107Google Scholar
  2. 2.
    Bonjour JP (1980) Int J Vit Nutr Res 50: 425Google Scholar
  3. 3.
    Friedrich W (1987) Handbuch der Vitamine. Urban u. Schwarzenberg, München-Wien-B altimoreGoogle Scholar
  4. 4.
    Hood RL, Johnson AR (1979) Nutr Rep Int 21: 727Google Scholar
  5. 5.
    Lynen F (1979) CRC Crit Rev Biochem 7: 103PubMedCrossRefGoogle Scholar
  6. 6.
    McCormick DB, Olson RE (1984) Biotin. In: Olson RE, Broquist HP, Chichester CO, Darby WJ, Kolbye AC jr., Stalvey RM (eds) Present Knowledge in Nutrition. The Nutrition Foundation Inc., Washington D.C., pp 365–376Google Scholar
  7. 7.
    Nutrition Reviews (1981) Nutr Rev 39: 274Google Scholar
  8. 8.
    Scott D (1958) Acta med scand 162: 69PubMedCrossRefGoogle Scholar
  9. 9.
    Whitehead CC (1981) Proc Nutr Soc 40: 165PubMedCrossRefGoogle Scholar

Literatur

  1. 1.
    Benkovic SJ (1980) On the mechanism of action of folate-and biopterin-requiring enzymes. Ann Rev Biochem 49: 227–251PubMedCrossRefGoogle Scholar
  2. 2.
    Blackley RL (1969) The Biochemistry of Folic Acid and Related Pteridins. North-Holland Publishing Company, Amsterdam, LondonGoogle Scholar
  3. 3.
    Delmonte L, Jukes TH (1962) Pharmacol Rev 14: 91PubMedGoogle Scholar
  4. 4.
    Food and Nutrition Board (1980) Recommended Dietary Allowances. 9th edn. Washington, D.C. pp 106-113Google Scholar
  5. 5.
    Friedrich W (1987) Handbuch der Vitamine. Urban u. Schwarzenberg, München, Wien, BaltimoreGoogle Scholar
  6. 6.
    Herbert V, Das KC (1976) The role of vitamin B12 and folic acid in hemato-and other cell-poiesis. Vit Horm 34: 1–30CrossRefGoogle Scholar
  7. 7.
    Krebs HA, Hems R, Tyler B (1976) The regulation of folate and methionine metabolism. Biochem J 158: 341–353PubMedGoogle Scholar
  8. 8.
    Krumdieck CL, Fukushima K, Fukushima T, Shiota T, Butterworth CE (1978) A long term study of the excretion of folate and pterins in a human subject after ingestion of 14C folic acid, with observations on the effect of diphenylhydantoin administration. Am J Clin Nutr 31: 88–93PubMedGoogle Scholar
  9. 9.
    Nutrition Reviews (1983) Have the pteroylglutamates a regulatory function? Nutr Rev 41: 190–192Google Scholar
  10. 10.
    Nutrition Reviews (1987) Mammalian folylpoly-γ-glutamate synthetase. Nutr Rev 45: 186–188Google Scholar
  11. 11.
    Pietrzik K, Urban G, Hötzel D (1980) Int J Vitam Nutr Res 50: 261PubMedGoogle Scholar
  12. 12.
    Reimann J, Apel A (1988) Vitamine. Wechselwirkungen zwischen Arzneistoffen und Vitaminen. Deutsche Apotheker Zeitung 128: 737–743Google Scholar
  13. 13.
    Wagner C (1984) Folic Acid. In: Olson RE, Broquist HP, Chichester CO, Darby WJ, Kolbye AC jr., Stalvey RM (eds) Present Knowledge in Nutrition. 5th edn. The Nutrition Foundation, Inc., Washington, D.C.Google Scholar

Literatur

  1. 1.
    Barley FW, Sato GH, Abeles RH (1972) An effect of vitamin B12 deficiency in tissue culture. J Biol Chem 247: 4270–4276PubMedGoogle Scholar
  2. 2.
    Chanarin I (1969) The megaloblastic anemias, FA Davis Company, Philadelphia, Pa., pp 1000Google Scholar
  3. 3.
    Cooper BA, Rosenblatt DS (1987) Inherited defects of vitamin B12 metabolism. Ann Rev Nutr 7: 291–320CrossRefGoogle Scholar
  4. 4.
    Corcino JJ, Waxman S, Herbert V (1970) Amer J Med 48: 562PubMedCrossRefGoogle Scholar
  5. 5.
    Das KC, Herbert V (1978) The lymphocyte as a marker of past nutritional status. Persistence of abnormal lymphocyte desoxyuridine (dU) suppression test and chromosomes in patients with past deficiency of folate and vitamin B12. Brit J Haematol 38: 219–233CrossRefGoogle Scholar
  6. 6.
    Friedrich W (1987) Handbuch der Vitamine. Urban u. Schwarzenberg, München, Wien, BaltimoreGoogle Scholar
  7. 7.
    Herbert V (1984) Vitamin B12. In: Olson RE, Broquist HP, Chichester CO, Darby WJ, Kolbye AC jr., Stalvey RM (eds) Present Knowledge in Nutrition. 5th edn. The Nutrition Foundation Inc., Washington D.C.Google Scholar
  8. 8.
    Jacob E, Baker SJ, Herbert V (1980) Vitamin B12-bindung proteins. Physiol Rev 60: 918–960PubMedGoogle Scholar
  9. 9.
    Kishimoto Y, Williams M, Moser HW, Hignite C, Biemann K (1973) Branchedchain and odd-numbered fatty acids and aldehydes in the nervous system of a patient with deranged vitamin B12 metabolism. J Lipid Res 14: 69–77PubMedGoogle Scholar
  10. 10.
    Matthews DM, Linnell JC (1982) Cobalamin deficiency and related disorders in infancy and childhood. Eur J Pediatr 138: 6–16PubMedCrossRefGoogle Scholar
  11. 11.
    Nutrition Reviews (1986) Recently described defects in vitamin B12 metabolism. Nutr Rev 44: 236–238Google Scholar
  12. 12.
    Nutrition Reviews (1986) Cobalamin E disease in an infant. Nutr Rev 44: 239–241Google Scholar

Literatur

  1. 1.
    Apports nutritionelles conceilles pour la population française; France (1981) Technique et Documentation. ParisGoogle Scholar
  2. 2.
    Basu TK (1982) Vitamin-C-aspirin interactions. Int J Vit Nutr Res Suppl 23: 83–90Google Scholar
  3. 3.
    Bauernfeind JC (1985) Antioxidant function of L-ascorbic acid in food technology. In: Hanck A, Hornig D (eds) Vitamins, Nutrients and therapeutic agents. Int J Vit Nutr Res, Suppl 27: 307-333Google Scholar
  4. 4.
    Degkwitz E, Schneider W, Staudinger H (1965) Ascorbinsäure. In: Lang K (Hrsg) Wiss Veröffentlichungen der Dtsch Ges für Ernährung, 14, Steinkopff, Darmstadt, S 17–60Google Scholar
  5. 5.
    Degkwitz E (1985) Neue Aspekte der Biochemie des Vitamin C. Z Ernährungswiss 24: 219–230PubMedCrossRefGoogle Scholar
  6. 6.
    Englard S, Seifter S (1986) The biochemical functions of ascorbic acid. Ann Rev Nutr 6: 365–406CrossRefGoogle Scholar
  7. 7.
    Fidanza A, Audisio M, Mastroiacovo P (1982) In: Hanck A (Hrsg) Vitamin C. Huber, Bern, S 153Google Scholar
  8. 8.
    Friedrich W (1987) Handbuch der Vitamine. Urban und Schwarzenberg, München, Wien, Baltimore, S 628Google Scholar
  9. 9.
    Gerster H (1987) Human vitamin C requirements. Z Ernährungswiss 26: 125–137PubMedCrossRefGoogle Scholar
  10. 10.
    Ginter E (1977) Vitamin C and Cholesterol. In: Hanck A, Ritzel G (eds) Re-evaluation of vitamin C. Huber, Bern, Stuttgart, Wien, pp 53–66Google Scholar
  11. 11.
    Ginter E (1979) World Rev Nutr Diet 33: 104PubMedGoogle Scholar
  12. 12.
    Hallberg L (1985) The role of vitamin C in improving the critical iron balance situation in women. Int J Vit Nutr Res, Suppl 27: 177–187Google Scholar
  13. 13.
    Hodges RE, Hood J, Canham JE, Sauberlich HE, Baker EM (1971) Clinical manifestation of ascorbic acid deficiency in man. Am J Clin Nutr 214: 432–443Google Scholar
  14. 14.
    Hornig D (1975) Stoffwechsel und Bedeutung des Vitamin C in der menschlichen Ernährung. Bibl Nutr Diet 21: 119–136Google Scholar
  15. 15.
    Hornig D (1975) Metabolism of ascorbic acid. World Rev Nutr Diet 23: 225–258PubMedGoogle Scholar
  16. 16.
    Hornig DH, Glatthaar BE (1985) Vitamin C and smoking: increased requirement of smokers. In: Hanck A, Hornig D (eds) Vitamins. Nutrients and therapeutic agents. Int J Vit Nutr Res, Suppl 27: 139-155Google Scholar
  17. 17.
    Hume R, Vallance B, Weyers E (1977) Ascorbic acid and stress. Int J Vit Nutr Res, Suppl 16: 89–98Google Scholar
  18. 18.
    Kallner A, Hartmann D, Hornig D (1979) Am J Clin Nutr 32: 530PubMedGoogle Scholar
  19. 19.
    Kallner A, Hartmann D, Hornig D (1977) Int J Vit Nutr Res 47: 383Google Scholar
  20. 20.
    Kübier W, Gehler J (1970) Int J Vit Nutr Res 40: 442Google Scholar
  21. 21.
    Mommadov S, Grafova VA (1983) Daily diet and ascorbic acid intake in man during work in the arid zone. Human Physiol 9: 224–228Google Scholar
  22. 22.
    Nobile S, Woodhill JM (1981) Vitamin C. The mysterious redox-system a trigger of life? MTP Press Ltd, Lancaster, Boston, The HagueGoogle Scholar
  23. 23.
    Nuctrition Reviews (1986) An ascorbate shuttle drives catecholamine formation by adrenal chromaffin granules. Nutr Rev 44: 248–250Google Scholar
  24. 24.
    Nutrition Reviews (1987) Vitamin C stabilizes ferritin: New insights into ironascorbate interactions. Nutr Rev 45: 217–218Google Scholar
  25. 25.
    Pauling L (1972) Vitamin C und der Schnupfen. Verlag Chemie, WeinheimGoogle Scholar
  26. 26.
    Pelletier O (1975) Vitamin C and cigarette smokers. Ann NY Acad Sci 258: 156–168PubMedGoogle Scholar
  27. 27.
    Sauberlich HE (1984) Ascorbic acid. In: Olson RE, Broquist HP, Chichester CO, Darby WJ, Kolbye AC jr., Stalvey RM (eds) Present Knowledge in Nutrition, 5th edn. The Nutrition Foundation Inc., Washington, D.C., pp 260–272Google Scholar
  28. 28.
    Schmidt KH, Hagmaier V, Hornig DH, Vuilleumier JP, Rutishauser G (1981) Amer J Clin Nutr 34: 305PubMedGoogle Scholar
  29. 29.
    Seib PA, Tolbert BM (1982) Ascorbic acid, chemistry, metabolism and uses. Amer Chem Soc, Washington, D.C.CrossRefGoogle Scholar
  30. 30.
    Tannenbaum SR, Mergens W (1980) Ann NY Acad Sci 355: 267PubMedCrossRefGoogle Scholar
  31. 31.
    Toggenburger G, Landolt M, Semenza G (1979) Na+-dependent, electroneutral L-ascorbate transport across brush border membrane vesicles from human small intestine. FEBS-Letters 108: 473–476PubMedCrossRefGoogle Scholar
  32. 32.
    Valance BD, Hume R, Weyers E (1978) British Heart Journal 40: 64CrossRefGoogle Scholar
  33. 33.
    Weber H, Weis W, Staudinger HJ (1969) Zur Stöchiometrie des mikrosomalen Elektronentransports auf Semidehydro-L(+)ascorbinsäure. Z Physiol Chem 350: 1176Google Scholar
  34. 34.
    Wintermeyer U (1981) Vitamin C, Entdeckung, Identifizierung und Synthese, heutige Bedeutung in Medizin und Lebensmitteltechnologie. Deutscher Apotheker Verlag, StuttgartGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag, GmbH & Co. KG, Darmstadt 1989

Authors and Affiliations

  • Karl Heinz Bässler
    • 1
  1. 1.Physiologisch-Chemisches InstitutJohannes-Gutenberg-UniversitätMainzGermany

Personalised recommendations