Factors affecting the viability of cryopreserved allograft heart valves

  • A. E. Heacox
  • R. T. McNally
  • K. G. M. Brockbank


Allograft heart valves have been used for more than 25 years as replacements for diseased aortic valves and repair of congenital abnormalities. In many instances, particularly paediatric surgery, it is the valve of choice due to its non-obstructive flow, relative freedom from calcification and thromboembolism without anticoagulation therapy. In order to permit valve size matching for recipients, it is necessary to find methods of storage which will maintain cellular viability. The best method which allows infinite, convenient storage is cryopreservation.


Aortic Valve Heart Valve Cellular Viability Allograft Valve Cryopreserved Allograft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Janabi N, Gibson K, Rose J, Ross DN (1973) Protein synthesis in fresh aortic and pulmonary valve allografts as an additional test for viability. Cardiovasc Res 7: 247PubMedCrossRefGoogle Scholar
  2. 2.
    Armiger LC, Gavin JB, Barratt-Boyes BG (1983) Histological assessment of orthotopic aortic valve leaflet allografts: Its role in selecting graft pre-treatment. Pathology 15: 67PubMedCrossRefGoogle Scholar
  3. 3.
    Bank HL, Schmehl MK, Brockbank KGM (1988) Endothelial and fibroblast viability assays for tissue allografts. In: Yankah C A et al. (eds) Current concepts on the use of aortic and pulmonary allografts for heart valve substitutes, Berlin 7–9 September 1987. Steinkopff, DarmstadtGoogle Scholar
  4. 4.
    Barratt-Boyes BG, Roche AHG (1969) A review of aortic valve homografts over a six and one-half year period. Ann Surg 170: 483PubMedCrossRefGoogle Scholar
  5. 5.
    Brockbank KGM, Bank HL (1987) Measurement of postcryopreservation viability. J Card Surg 2 (Suppl): 145PubMedGoogle Scholar
  6. 6.
    Frim J, Mazur P (1983) Interaction of cooling rate, warming rate glycerol concentration and dilution procedure on the viability of frozen-thawed human granulocytes. Cryobiology 20: 657PubMedCrossRefGoogle Scholar
  7. 7.
    Henney AM, Parker DJ, Davies MJ (1980) Estimation of protein and DNA synthesis in allograft organ culture as a measure of cell viability. Cardiovasc Res 14: 154PubMedCrossRefGoogle Scholar
  8. 8.
    Leibo SP, Farrant J, Mazur P, et al (1970) Effects of freezing on marrow stem cell suspensions: Interactions of cooling and warming rates in the presence of PVP, sucrose, or glycerol. Cryobiology 6:315PubMedCrossRefGoogle Scholar
  9. 9.
    Leibo SP, Mazur P, Jackowski SC (1974) Factors affecting survival of mouse embryos during freezing and thawing. Exp Cell Res 89: 79PubMedCrossRefGoogle Scholar
  10. 10.
    Lockey E, Al-Janabi N, Gonzalez-Lavin L, Ross DN (1972) A method of sterilizing and preserving fresh allograft heart valves. Thorax 27: 398PubMedCrossRefGoogle Scholar
  11. 11.
    LoGrippo GA, Overhulse PR, Szilagyi DC, Hartman FW (1955) Procedure for the sterilization of arterial homografts with beta-propiolactone. Lab Invest 4: 217Google Scholar
  12. 12.
    Mazur P (1965) Causes of injury in frozen and thawed cells. Fed Proc 24 (Suppl 15): 175Google Scholar
  13. 13.
    Mazur P, Schmidt J (1968) Interactions of cooling velocity, temperature, and warming velocity on the survival and frozen and thawed yeast. Cryobiology 5: 1PubMedCrossRefGoogle Scholar
  14. 14.
    McGregor CGA, Bradley JF, McGee JO’D, et al. (1976) Tissue culture, protein and collagen synthesis in antibiotic sterilized canine heart valves. Cardiovasc Res 10: 389PubMedCrossRefGoogle Scholar
  15. 15.
    Meeker IA Jr, Gross RE (1951) Sterilization of frozen arterial grafts by high voltage cathode-ray irradiation. Surgery 63: 45Google Scholar
  16. 16.
    Mochtar B, van der Kamp AWM, Roza-DeJongh EJM, Nauta J (1974) Cell survival in canine aortic heart valves stored in nutrient medium. Cardiovasc Res 18: 497CrossRefGoogle Scholar
  17. 17.
    O’Brien MF, Stafford G, Gardner M, Pohlner P, McGiffin D, Johnston N, Brosnan A, Duffy P (1987) The viable cryopreserved allograft aortic valve. J Cardiac Surg 2 (Suppl): 153–167Google Scholar
  18. 18.
    van der Kamp AWM, Nauta J (1979) Fibroblast function and the maintenance of the aortic valve matrix. Cardiovasc Res 13: 167PubMedCrossRefGoogle Scholar
  19. 19.
    van der Kamp AWM, Visser WJ, van Dongen JM, et al (1981) Preservation of aortic heart valves with maintenance of cell viability. J Surg Res 30: 47PubMedCrossRefGoogle Scholar
  20. 20.
    Wallace RB, Giuliani ER, Titus JL (1971) Use of aortic valve homografts for aortic valve replacement. Circulation 43: 365PubMedGoogle Scholar
  21. 21.
    Watts LK, Duffy P, Field B, et al (1976) Establishment of a viable homograft cardiac valve bank: 1. A rapid method of determining homograft viability. Ann Thorac Surg 21: 230PubMedCrossRefGoogle Scholar
  22. 22.
    Wilson AT, Bruno P (1950) The sterilization of bacteriological media and other fluids with ethylene oxide. J Exp Med 91: 449PubMedCrossRefGoogle Scholar
  23. 23.
    Yankah AC, Sievers HH, Bursch JH, et al (1984) Orthotopic transplantation of aortic valve allografts. Early hemodynamic results. Thorac Cardiovasc Surg 32: 92PubMedCrossRefGoogle Scholar
  24. 24.
    Bank HL, Brockbank KGM (1987) Basic principles of cryobiology. J Cardiac Surg 2 (Suppl): 137Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt 1988

Authors and Affiliations

  • A. E. Heacox
    • 1
  • R. T. McNally
    • 1
  • K. G. M. Brockbank
    • 1
  1. 1.CryoLife, Inc.MariettaUSA

Personalised recommendations