Advertisement

Effect of Coronary Occlusion During Percutaneous Transluminal Angioplasty on Systolic and Diastolic Left Ventricular Function, Coronary Hemodynamics, and Myocardial Energetic Metabolism

  • Patrick W. Serruys
  • F. Piscione
  • W. Wijns
  • J. A. J. Hegge
  • E. Harmsen
  • M. van den Brand
  • P. de Feyter
  • J. W. de Jong
  • P. G. Hugenholtz
Conference paper

Abstract

Until recently, the measurement in man of left ventricular geometry and hemodynamics and the assessment of alteration in myocardial metabolism early after an abrupt occlusion of a major coronary artery were not feasible. Percutaneous transluminal coronary angioplasty (PTCA), however, now provides a unique opportunity to study the time course of these variables during the transient interruption of coronary flow in the balloon occlusion sequence in patients with single-vessel disease and without angiographically demonstrable collateral circulation [1, 2].

Keywords

Coronary Occlusion Balloon Inflation Occlusion Pressure Left Ventricular Geometry Wall Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Das SK, Serruys PW, van den Brand M, Domenicucci S, Vletter WB, Roelandt J (1983) Acute echocardiographic changes during percutaneous coronary angioplasty and their relationship to coronary blood flow. J Cardiovasc Ultrasonography 2: 269–271Google Scholar
  2. 2.
    Serruys PW, van den Brand M, Brower RW, Hugenholtz PG (1983) Regional cardioplegia and cardioprotection during transluminal angioplasty, which role for nifedipine? Eur Heart J 4: 115–121PubMedGoogle Scholar
  3. 3.
    Meester GT, Bernard N, Zeelenberg C, Brower RW, Hugenholtz PG (1975) A computer system for real-time analysis of cardiac catheterization data. Cathet Cardiovasc Diagn 1: 112–123CrossRefGoogle Scholar
  4. 4.
    Meester GT, Zeelenberg C, Bernard N, Gorter S (1974) Beat-to-beat analysis of cardiac catheterization data. In: Computers in cardiology. IEEE Computer Society, Los Angeles, pp 63–65Google Scholar
  5. 5.
    Thompson DS, Waldron CB, Juul SM, Naqvi N, Swanton RH, Coltart DJ, Jenkins BS, Webbpeploe MM (1982) Analysis of left ventricular pressure during isovolumic relaxation in coronary artery disease. Circulation 65: 690–697PubMedCrossRefGoogle Scholar
  6. 6.
    Bernardi L, Uretsky BF, Reddy PS, Boudreau R (1985) Modeling the isovolumic relaxation period. Cathet Cardiovasc Diagn 11: 255–268PubMedCrossRefGoogle Scholar
  7. 7.
    Brower RW, Meij S, Serruys PW (1983) A model of asynchronous left ventricular relaxation predicting the bi-exponential pressure decay. Cardiovasc Res 17: 482–488PubMedCrossRefGoogle Scholar
  8. 8.
    Slager CJ, Reiber JHC, Schuurbiers JCH, Meester GT (1978) Contouromat — a hard-wired left ventricular angio processing system. Design and application. Comput Biomed Res 11: 491–502PubMedCrossRefGoogle Scholar
  9. 9.
    Metha, J, Pepine CJ (1978) Effect of sublingual nitroglycerin on regional flow in patients with and without coronary disease. Circulation 58: 803–807Google Scholar
  10. 10.
    Apstein CS, Puchner E, Brachfeld N (1979) Improved automated lactate determination. Anal Biochem 38: 20–34CrossRefGoogle Scholar
  11. 11.
    Harmsen E, de Jong JW, Serruys PW (1981) Hypoxanthine production by ischemic heart demonstrated by high-pressure liquid chromatography of blood purine nucleosides and oxypurines. Clin Chim Acta 115: 73–84Google Scholar
  12. 12.
    Chatterjee SK, Bhattacharya M, Barlow JJ (1979) A simple, specific radiometric assay for 5’-nucleotides. Anal Biochem 95: 497–506PubMedCrossRefGoogle Scholar
  13. 13.
    Tyberg JV, Parmley WW, Sonnenblick EH (1986) In vitro studies of myocardial asynchrony and regional hypoxia. Circ Res 25: 569–579Google Scholar
  14. 14.
    Kumada T, Karliner JS, Pouleyr H, Gallagher KP, Shirato K, Ross J jr (1979) Effects of coronary occlusion on early ventricular diastolic events in conscious dogs. Am J Physiol 237: H542 - H549PubMedGoogle Scholar
  15. 15.
    Pagani M, Vatner SF, Baig H, Braunwald E (1978) Initial myocardial adjustment to brief periods of ischema and reperfusion in the conscious dog. Cir Res 43 (1): 83–92Google Scholar
  16. 16.
    Theroux P, Ross J jr, Franklin D, Kemper WS, Sasayama S (1976) Regional myocardial function in the conscious dog during acute coronary occlusion and responses to morphine, propanolol, nitroglycerine and lidocaine. Circulation 53: 302–314PubMedGoogle Scholar
  17. 17.
    Manning AS, Hearse DJ, Dennis SC, Bullock GR, Coltard DJ (1980) Myocardial ischemia: an isolated, globally perfused rat heart model for metabolic and pharmacological studies. Eur J Cardiol 11: 1–21PubMedGoogle Scholar
  18. 18.
    Wilson DF, Owen CS, Erecinska M (1979) Quantitative dependence of mitochondrial oxidative phosphorylation on oxygen concentration. A new mathematical model. Arch Biochem Biophys 195: 494–504PubMedCrossRefGoogle Scholar
  19. 19.
    de Jong JW (1979) Biochemistry of acutely ischemic myocardium. In: Schaper W (ed) The pathophysiology of myocardial perfusion. Elsevier/North-Holland, Amsterdam, pp 719–750Google Scholar
  20. 20.
    Garlick BP, Radda GK, Seeley PJ (1979) Studies of acidosis in the ischaemic heart by pohsphorus nuclear magnetic resonance. Biochem J 184: 547–554PubMedGoogle Scholar
  21. 21.
    Hearse DJ (1979) Oxygen deprivation and early myocardial contractile failure. Reassessment of the possible role of adenosine triphosphate. Am J Cardiol 44: 1115–1120PubMedCrossRefGoogle Scholar
  22. 22.
    Hearse DJ, Drome R, Yellon DM, Wyse R (1983) Metabolic and flow correlates of myocardial ischemia. Cardiovasc Res 17: 452–458PubMedCrossRefGoogle Scholar
  23. 23.
    Apstein CS, Deckelbaum L, Mueller M, Hagopian L, Hood WB (1977) Graded global ischemia and reperfusion. Circulation 55: 864–872PubMedGoogle Scholar
  24. 24.
    Neely JR, Liedke AJ, Whitmer TJ, Rovetto MJ (1975) Relationship between coronary flow and adenosine triphosphate production from glycolysis and oxidative metabolism. Recent Adv Studies Cardiac Structure Metab 8: 301–321Google Scholar
  25. 25.
    de Jong JW, Goldstein S (1974) Changes in coronary venous inosine concentration and myocardial wall thickening during regional ischemia in the pig. Circ. Res 35: 111–116PubMedGoogle Scholar
  26. 26.
    Jaski BE, Serruys PW (1985) Epicardial wall motion and left ventricular function during coronary graft angioplasty in humans. J Am Coll Cardiol 6: 695–700PubMedCrossRefGoogle Scholar
  27. 27.
    Serruys PW, Wijns W, Grimm J, Slager C, Hess OM (1984) Effects of repeated transluminal occlusions during angioplasty on global and regional left ventricular chamber stiffness (abstr). Circulation 70 [Suppl II]: 348Google Scholar
  28. 28.
    Serruys PW, Wijns W, van den Brand M, et al. (1984) Left ventricular performance, regional blood flow, wall motion and lactate metabolism during transluminal angioplasty. Circulation 70: 25–36PubMedCrossRefGoogle Scholar
  29. 29.
    de Boer LWV, Ingwall JS, Kloner RA, Braunwald E (1980) Prolonged derangements of canine myocardial purine metabolism after brief coronary artery occlusion not associated with anatomic evidence of necrosis. Proc Natl Acad Sci USA 77: 5471–5475CrossRefGoogle Scholar
  30. 30.
    de Jong JW, Harmsen E, de Tombe PP, Keijzer E (1983) Release of purine nucleosides and oxypurines from the isolated perfused rat heart. Adv Myocardiol 4: 339–345PubMedGoogle Scholar
  31. 31.
    Schrader J, Haddy FJ, Gerlach E (1979) Release of adenosine, inosine and hypoxanthine from the isolated guinea pig heart during hypoxia, flow-autoregulation and reactive hyperemia. Pflugers Arch 369: 251–257CrossRefGoogle Scholar
  32. 32.
    Berne RM (1980) The role of adenosine in the regulation of coronary blood flow. Circ Res 47: 807–813PubMedGoogle Scholar
  33. 33.
    Fox AC, Reed GE, Mellman H, Silk BB (1979) Release of nucleosides from canine and human hearts as an index of prior ischemia. Am J Cardiol 43: 52–57PubMedCrossRefGoogle Scholar
  34. 34.
    Kugler G (1978) The effects of nitroglycerin on myocardial release of inosine, hypoxanthine and lactate during pacing induced angina. Basic Res Cardiol 73: 523–533PubMedCrossRefGoogle Scholar
  35. 35.
    Kugler G (1979) Myocardial release of lactate, inosine and hypoxanthine during atrial pacing and exercise-induced angina. Circulation 59: 43–49PubMedGoogle Scholar
  36. 36.
    Brower RW, de Jong JW, Haalebos M et al. (1982) Evaluation of cardioplegia in coronary artery bypass graft surgery. In Just H, Tschirkov A, Schlosser V (eds) Kalziumantagonisten zur Kardioplegie and Myocardprotection in der offenen Herzchirurgie. Thieme, Stuttgart, pp 69–80Google Scholar
  37. 37.
    Serruys PW, de Jong JW, Harmsen E, Verdouw PD, Hugenholtz PG (1983) Effect of intracoronary nifedipine in high-energy phosphate metabolism during repeated pacing-induced angina and during experimental ischemia. In: Kaltenbach M, Neufield HN (eds) New therapy of ischemic heart disease and hypertension. Excerpta Medica, Amsterdam, pp 340–353Google Scholar
  38. 38.
    Edlund A, Berglund B, van Dorne D, et al. (1985) Coronary flow regulation in patients with ischemic heart disease: release of purines and prostacyclin and the effect of inhibitors of prostaglandin formation. Circulation 6: 1113–1120CrossRefGoogle Scholar
  39. 39.
    Schoenberg MH, Fredholm BB, Hohlbach G (1985) Changes in acid-base status, lactate concentration and purine metabolics during reconstructive aortic surgery. Acta Chir Scand 151: 227–233PubMedGoogle Scholar
  40. 40.
    Drake AJ, Haines JR, Noble MIM (1980) Preferential uptake of lactate by the normal myocardium in dogs. Cardiovasc Res 14: 65–77PubMedCrossRefGoogle Scholar
  41. 41.
    Verdouw PW, Stam H (1980) In: Moret PR et al. (eds) Lactate. Physiologic, methodologic and pathologic approach. Springer-Verlag, Berlin Heidelberg New York, pp 207–223Google Scholar
  42. 42.
    Rothman MT, Bairn DS, Simpson JB, Harrison DC (1982) Coronary hemodynamics during per-cutaneous transluminal coronary angioplasty. Am J Cardiol 49: 1615–1621PubMedCrossRefGoogle Scholar
  43. 43.
    Swain JL, Sabina RL, Hines JJ, Greenfield Jr JC, Holmes EW (1984) Repetitive episodes of brief ischemia (12 min) do not produce a cumulative depletion of high-energy phosphate compounds. Cardiovasc Res 18: 264–269PubMedCrossRefGoogle Scholar
  44. 44.
    Verdouw PD, Remme WJ, de Jong JW, Breeman WAP (1979) Myocardial substrate utilization and hemodynamics following repeated coronary flow reduction in pigs. Basic Res Cardiol 74: 477–493PubMedCrossRefGoogle Scholar
  45. 45.
    Gubdjarnason S, Mathes P, Revens KG (1970) Functional compartmentation of ATP and creatine phosphates in heart muscle. J Mol Cell Card 1: 325CrossRefGoogle Scholar
  46. 46.
    Schrader J, Gerlach E (1976) Compartmentation of cardiac adenine nucleotides and formation of adenosine. Pflugers Arch 367: 129–135PubMedCrossRefGoogle Scholar
  47. 47.
    Swain JL, Sabina RL, McHale PA, Greenfield JC jr, Holmes EW (1982) Prolonged myocardial nucleotide depletion after brief ischemia in the open-chest dog. Am J Physiol 242: H818 - H826PubMedGoogle Scholar
  48. 48.
    Vial C, Font B, Goldschmidt D, Pearlman AS, Delaye J (1978) Regional myocardial energetics during brief periods of coronary occlusion and reperfusion: comparison with ST-segment changes. Cardiovasc Res 12: 470–476PubMedCrossRefGoogle Scholar
  49. 49.
    Rentrop KP, Cohen M, Blanke H, Phillips RA (1985) Changes in collateral channel filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects. J Am Coll Cardiol 5: 587–592PubMedCrossRefGoogle Scholar
  50. 50.
    Probst P, Zangl W, Pachinger O (1985) Relation of coronary arterial occlusion pressure during percutaneous transluminal coronary angioplasty to presence of collaterals. Am J Cardiol 55: 1264–1269PubMedCrossRefGoogle Scholar
  51. 51.
    Meier B, Luethy P (1984) Coronary wedge pressure as predictor of recruitable collateral arteries. Circulation 70 [Suppl II): 266Google Scholar
  52. 52.
    Hearse DJ (1977) Reperfusion of the ischemic myocardium (editorial). J Mol Cell Cardiol 9: 605–616PubMedCrossRefGoogle Scholar
  53. 53.
    Mittnacht S, Sherman C, Farber JL (1981) Reversal of ischemic mitochondrial dysfunction. J Biol Chem 256: 3199–3206PubMedGoogle Scholar
  54. 54.
    Puri PS (1975) Contractile and biochemical effects of coronary reperfusion after extended periods of coronary occlusion. Am J Cardiol 36: 244–251PubMedCrossRefGoogle Scholar
  55. 55.
    Apstein CS, Deckelbaum L, Hagopian L, Hood WB (1978) Acute cardiac ischemia and reperfusion: contractility, relaxation and glycolysis. Am J Physiol 235: H637 - H648PubMedGoogle Scholar
  56. 56.
    Lewis MJ, Honsmand PR, Claes VA, Brutsaert DL, Henderson AH (1980) Myocardial stiffness during hypoxia and reoxygenation contracture. Cardiovasc Res 14: 339–344PubMedCrossRefGoogle Scholar
  57. 57.
    Flaherty JT, Weisfeld ML, Buckley BH, Gardner TJ, Gott VT, Jacobus WE (1982) Mechanism of ischemic myocardial cell damage assessed by phosphorus-31 nuclear magnetic resonance. Circuluation 65: 561–576CrossRefGoogle Scholar
  58. 58.
    Braunwald E, Kloner RA (1982) The “stunned” myocardium. Circulation 66: 1146–1149PubMedCrossRefGoogle Scholar
  59. 59.
    Geft IL, Fishbein MC, Ninomiya K, et al (1982) Intermittent brief periods of ischemia have a cumulative effect and may cause myocardial necrosis. Circulation 66: 1150–1153PubMedCrossRefGoogle Scholar
  60. 60.
    Taegtmeyer H, Roberts AFC, Raine AEG (1985) Emergency metabolism in reperfused heart muscle: metabolic correlates to return of function. J Am Coll Cardiol 6: 864–870PubMedCrossRefGoogle Scholar
  61. 61.
    Schmitz HJ, Meyer J, Kiesslich T, Effert S (1982) Greater initial dilatation gives better late angiographie results in percutaneous coronary angioplasty (PTCA). Circulation 66 [Suppl II]: 62Google Scholar
  62. 62.
    Kaltenbach M, Kober G (1982) Can prolonged application of pressure improve the results of coronary angioplasty (PTCA)? Circulation 66 [Suppl II]: 123Google Scholar
  63. 63.
    Theroux P, Ross J jr, Franklin D, Covell JW, Bloor CM, Sasayama S (1977) Regional myocardial infarction in the unanesthetized dog. Circ Res 40: 158–165PubMedGoogle Scholar
  64. 64.
    Heijndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF (1975) Regional myocardial function and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 56: 978–985CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt 1986

Authors and Affiliations

  • Patrick W. Serruys
    • 2
  • F. Piscione
    • 1
  • W. Wijns
    • 1
  • J. A. J. Hegge
    • 1
  • E. Harmsen
    • 1
  • M. van den Brand
    • 1
  • P. de Feyter
    • 1
  • J. W. de Jong
    • 1
  • P. G. Hugenholtz
    • 1
  1. 1.Catheterization and Cardiochemical Laboratories, ThoraxcenterErasmus UniversityRotterdamThe Netherlands
  2. 2.Catheterization Laboratory ThoraxcenterRotterdamThe Netherlands

Personalised recommendations