Bedeutung anisotropen Gewebes für langsame Erregungsleitung und ventrikuläre Reentry-Tachykardien in der epikardialen Infarktgrenzzone am Hundeherzen

  • Andrew L. Wit
  • S. Dillon
  • P. C. Ursell
  • M. A. Allessie
  • W. J. E. P. Lammers
Conference paper


Kreisende Erregung ist sowohl bei experimentellen als auch klinischen ventrikulären Rhythmusstörungen im Gefolge eines Herzinfarkts bedeutsam. Als Mechanismus wurden dabei Änderungen des Aktionspotentials von Herzmuskelzellen als primäre Ursache von langsamer Leitung und Leitungsblockierungen, die für eine kreisende Erregung notwendig sind, angenommen (4, 6, 9, 11, 13, 14, 18, 19, 21, 30). In dieser Arbeit möchten wir jedoch aufzeigen, daß eine Änderung oder Unterdrückung von Aktionspotentialen nicht immer für eine kreisende Erregung beim Herzinfarkt notwendig ist und daß eine kreisende Erregung ursächlich auf Einflüsse der Infarktstruktur auf die Erregungsleitung zurückgehen kann.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cardinal R, Savard P, Carson DL, Page P (1984) Mapping of ventricular tachycardia induced by programmed stimulation in canine preparation of myocardial infarction. Circulation 70: 136–148PubMedCrossRefGoogle Scholar
  2. 2.
    Clerc L (1976) Directional differences of impulse spread in trabecular muscle from mammalian heart. J Physiol (London) 255: 335–346Google Scholar
  3. 3.
    Delmar M, Michaels DC, Jalife J: Effects of increasing intercellular resistance on transverse and longitudinal propagation in sheep epicardial muscle. Circ Res (In press)Google Scholar
  4. 4.
    Downar E, Janse MJ, Durrer D (1977) The effects of acute coronary occlusion on subepicardial transmem-brane potentials in the intact porcine heart. Circulation 56: 217–224PubMedGoogle Scholar
  5. 5.
    El-Sherif N, Smith A, Evans K (1981) Canine ventricular arrhythmias in the late myocardial infarction period; Epicardial mapping of reentrant circuits. Circ Res 49: 255–265PubMedGoogle Scholar
  6. 6.
    El-Sherif N, Gough WB, Zeiler RH, Mehra R (1983) Triggered ventricular arrhythmias in 1-day-old myocardial infarction in the dog. Circ Res 52: 566–579PubMedGoogle Scholar
  7. 7.
    Fenoglio JJ Jr, Pham TD, Harken AH, Horowitz LN, Josephson ME, Wit AL (1983) Recurrent sustained ventricular tachycardia: Structure and ultrastructure of subendocardial regions where tachycardia originates. Circulation 68: 518–533PubMedCrossRefGoogle Scholar
  8. 8.
    Fozzard HA (1979) Conduction of the action potential. In: Berne RM (ed) Handbook of Physiology Section 2: The Cardiovascular System Vol. 1, The Amer Heart Physiol Soc, Baltimore, pp 335–356Google Scholar
  9. 9.
    Friedman PL, Steward JR, Fenoglio JJ Jr, Wit AL (1973) Survival of subendocardial Purkinje fibers after extensive myocardial infarction in dogs: In vitro and in vivo correlations. Circ Res 33: 597–611PubMedGoogle Scholar
  10. 10.
    Gardner PI, Ursell PC, Fenoglio JJ Jr, Wit AL (1985) Electrophysiologic and anatomic basis for fractionated electrograms recorded from healed myocardial infarcts. Circulation 72: 596–611PubMedCrossRefGoogle Scholar
  11. 11.
    Gettes LS (1986) Effects of ischemia on cardiac electrophysiology. In: Fozzard HA, Jennings RB, Haber E, Katz AM (eds) The Heart and Cardiovascular System: Scientific Foundations. Raven, New York, pp 1317–1342Google Scholar
  12. 12.
    Gough WB, Mehra R, Restivo M, Zeiler RH, El-Sherif N (1985) Reentrant ventricular arrhythmias in the late MI period in the dog: Correlation of activation and refractory maps. Circ Res 57: 432–442PubMedGoogle Scholar
  13. 13.
    Janse MJ, Kleber AG (1981): Electrophysiological changes and ventricular arrhythmias in the early phase of regional myocardial ischemia. Circ Res 49: 1069–181PubMedGoogle Scholar
  14. 14.
    Janse MJ, van Capelle FJL, Morsink H, Kleber AG, Wilms-Schopman E, Cardinal R, Naumann d’Alnoncourt C, Durrer D (1980) Flow of “injury current”and patterns of excitation during early ventricular arrhythmias in acute regional myocardial ischemia in isolated porcine and canine hearts: evidence for 2 different arrhythmogenic mechanisms. Circ Res 47: 151–165PubMedGoogle Scholar
  15. 15.
    Kleber AG, Rugger CB, Janse MJ: Electrical uncoupling and increase of extracellular resistance after induction of ischemia in isolated, arterially perfused rabbit papillary muscle. Circ Res (In press)Google Scholar
  16. 16.
    Kramer JB, Saffitz JE, Witkowski FX, Corr PB (1985) Intermural reentry as a mechanism of ventricular tachycardia during evolving myocardial infarction. Circ Res 56: 736–748PubMedGoogle Scholar
  17. 17.
    Lammers WJEP, Wit AL, Allessie MA: Effects of anisotropy on functional reentrant circuits: Preliminary results of computer simulation studies. In: Beyar R, Sideman S (eds), Electromechanical Activation, Metabolism and Perfusion of the Heart - Simulation and Experimental Models. Martinus Nijhoff, Dordrecht, Boston, Lancaster. (In press)Google Scholar
  18. 18.
    Lazzara R, El-Sherif N, Scherlag BJ (1973) Electrophysiological properties of canine Purkinje cells in 1-day- old myocardial infarction. Circ Res 33: 722–734PubMedGoogle Scholar
  19. 19.
    Lazzara R, El-Sherif N, Hope RR, Scherlag BJ (1978) Ventricular arrhythmias and electrophysiological consequences of myocardial ischemia and infarction. Circ Res 42: 740–749PubMedGoogle Scholar
  20. 20.
    Mehra R, Zieler RH, Gough WB, El-Sherif N (1983) Reentrant ventricular arrhythmias in the late myocardial infarction period; Electrophysiologic-anatomic correlation of reentrant circuits. Circulation 67: 11–23PubMedCrossRefGoogle Scholar
  21. 21.
    Myerburg RJ, Gelband H, Nilsson K, Sung RJ, Thurer RJ, Morales AR, Bassett AL (1977) Long term electrophysiological abnormalities resulting from experimental myocardial infarction in cats. Circ Res 41: 73–84PubMedGoogle Scholar
  22. 22.
    Page E, Shibata Y (1981) Permeable junctions between cardiac cells. Am Rev Physiol 43: 431–441CrossRefGoogle Scholar
  23. 23.
    Spach M, Miller WT, Geselowitz DB, Barr RC, Kootsey JM, Johnson EA (1981) The discontinuous nature of propagation in normal canine cardiac muscle: Evidence for recurrent discontinuities of intracellular resistance that effect the membrane currents. Circ Res 48: 39–54PubMedGoogle Scholar
  24. 24.
    Spach MS, Miller WT, Dolber PC, Kootsey JM, Summer JR, Moscher CE (1982) The functional role of structural complexities in the propagation of depolarization in the atrium of the dog: Cardiac conduction disturbances due to discontinuities of effective axial resistivity. Circ Res 50: 175–191PubMedGoogle Scholar
  25. 25.
    Spach MS, Kootsey JM (1983) The nature of electrical propagation in cardiac muscle. Am J Physiol: Heart and Circ Physiol 13: 3–22Google Scholar
  26. 26.
    Spach MS, Dolber PC (1986) Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle: Evidence for electrical uncoupling of side to side fiber connections with increasing age. Circ Res 56: 356–371Google Scholar
  27. 27.
    Ursell PC, Gardner PI, Albala A, Fenoglio JJ Jr, Wit AL (1985) Structural and electrophysiological changes in the epicardial border zone of canine myocardial infarcts during infarct healing. Circ Res 56: 436–451PubMedGoogle Scholar
  28. 28.
    van Capelle F (1983) Slow conduction and cardiac arrhythmias. Academisch Proefschrift Universiteit van AmsterdamGoogle Scholar
  29. 29.
    Wit AL, Allessie MA, Bonke FIM, Lammers W, Smeets J, Fenoglio JJ Jr (1982) Electrophysiologic mapping to determine the mechanism of experimental ventricular tachycardia initiated by premature impulses. Experimental approach and initial results demonstrating reentrant excitation. Am J Cardiol 49: 166–185PubMedCrossRefGoogle Scholar
  30. 30.
    Wit AL, Bigger JT Jr (1975) Possible electrophysiological mechanisms for lethal arrhythmias accompanying ischemia and infarction. Circulation 51 and 52 (Suppl II): 96–115Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag, GmbH & Co. KG, Darmstadt 1987

Authors and Affiliations

  • Andrew L. Wit
    • 3
  • S. Dillon
    • 1
    • 2
    • 4
  • P. C. Ursell
    • 1
    • 2
    • 4
  • M. A. Allessie
    • 1
    • 2
    • 4
  • W. J. E. P. Lammers
    • 1
    • 2
    • 4
  1. 1.Department of Pharmacology College of Physicians and SurgeonsColumbia UniversityNew YorkUSA
  2. 2.Department of PhysiologyUniversity of LimburgMaastrichtThe Netherlands
  3. 3.Department of Pharmacology College of Physicians and SurgeonsColumbia UniversityNew YorkUSA
  4. 4.Department of Pathology College of Physicians and SurgeonsColumbia UniversityNew YorkUSA

Personalised recommendations