Advertisement

Das Komplement-System

  • Klaus Rother

Zusammenfassung

Das C-System soll im folgenden unter verschiedenen Gesichtspunkten wie Reaktionskinetik oder Proteinchemie betrachtet werden. Diese Gesichtspunkte sind leichter zu verstehen, wenn man ihre historische Entwicklung kennt. Je nach den technischen Möglichkeiten war der eine Erkenntnisweg eher begehbar als der andere.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Brandd E., Über das Verhalten der Komplemente bei der Dialyse. Berlin. Klin. Wschr. 44, 1075 (1907).Google Scholar
  2. Coca, A. F., A study of the anticomplementary action of yeast, of certain bacteria and of cobra venom. Z. Immunitätsforsch. 21, 604 (1914).Google Scholar
  3. Da Costa Cruz, J and H. de Azevedo Penna, Constitution of alexin and mechanism of specific haemolysis. Mem. Inst. Oswaldo Cruz 26, 124 (1932).Google Scholar
  4. Ferrata, A., Die Unwirksamkeit der komplexen Hämolysine in salzfreien Lösungen und ihre Ursache. Berlin. Klin. Wschr. 44, 366 (1907).Google Scholar
  5. Gordon, J., H. R. Whitehead and A. Wormall, The action of ammonia on complement. The fourth component. J. Biochem. 20, 1028 (1926).Google Scholar
  6. Klein, P. G. and H. J. Wellensiek, Multiple Nature of the third component of guinea-pig complement. I. Separation and characterization of three factors a, b and c, essential for haemolysis. Immunology 8, 590 (1965).PubMedGoogle Scholar
  7. Mayer, M. M., C. C. Croft and M. Gray, Kinetic studies on immune hemolysis. I. A method. J. Exp. Med. 88, 427 (1948).PubMedGoogle Scholar
  8. Nelson, R. A., J. Jensen, I. Gigli and N. Tamura, Methods for the separation, purification and measurement of nine components of hemolytic complement in guinea-pig serum. Immunochemistry 3, 111 (1966).PubMedGoogle Scholar
  9. Rapp, H. J., Mechanism of immune hemolysis: Recognition of two steps in the conversion of EAC 142 to Ex. Science 127, 234 (1958).PubMedGoogle Scholar
  10. Ritzy H., Über die Wirkung des Cobragiftes auf die Komplemente. Z. Immunitätsforsch. 13, 62 (1912).Google Scholar
  11. Ueno, S., Studien über die Komponenten des Komplementes I und II. Jap. J. med. Sci. VII. Social Med. Hyg. 2, 201 (1938); 2, 225 (1938).Google Scholar
  12. Wellensieky H. J. and P. G. Klein, Multiple Nature of the third component of guinea-pig complement. II. Separation and description of two additional factors ß and d; Preparation and characterization of four intermediate products. Immunology 8, 604 (1965).Google Scholar
  13. Doerr, R., Das Komplement. In: Die Immunitätsforschung. Ergebnisse und Probleme in Einzeldarstellungen. Band II. (Wien 1947).Google Scholar
  14. Osler, A. G., Function of the complement system. Advan. Immunol. 1, 131 (1961).Google Scholar
  15. Mayer, M. M., Complement and complement fixation. In: Kabat, E. A. and Mayer, M. M. Experimental Immunochemistry, ed. 2, p. 133 (Springfield, 111. 1961 a).Google Scholar
  16. Mayer, M. M., Development of the one-hit theory of immune hemolysis. In: Heidelberger, M. and Plescia, O. J. eds. Immunochemical Approaches to Problems in Microbiology. p. 268 (New Brunswick, N. J. 1961 b). Complement: Ciba Foundation Symposium G.Google Scholar
  17. E. W. Wolstenholme, J. Knight, eds. (London 1965). Immunchemie: 15. Colloqu. d. Ges. f. Physiol. Chemie (1965) (Berlin, Heidelberg, New York 1965)Google Scholar
  18. a).
    Fischer, H., Übersicht und aktuelle Probleme, p. 284.Google Scholar
  19. b).
    MüllerEberhard, H. Chemie der Komplement-Faktoren, p. 309.Google Scholar
  20. c).
    Klein, P., Faktorenanalyse der dritten Komplementkomponente, p. 330.Google Scholar
  21. Klein, P. G. and H. J. Wellensiek, Complement: Hemolytic function and chemical properties. Int. Rev. exp. Pathology 4, 245 (1965).Google Scholar
  22. Nelson, R. A, The role of complement in immune phenomena. In: The Inflammatory Process. B. W. Zweifach, R. T. MacCluskey and L. H. Grant, eds. p. 819 (New York 1965).Google Scholar
  23. Nelson, R. A., J. Jensen, I. Gigli and N. Tamura, Methods for the separation, purification and measurement of nine components of hemolytic complement in guinea-pig serum. Immunochemistry 3, 111 (1966).PubMedGoogle Scholar
  24. Gewurz, H., J. Finstad, L. H. Muschel and R. A. Good, Phylogenetic inquiry into the origins of the complement system. In: Phylogenetic approaches to immunity; Smithy Miescher, Good eds., p. 105 (Gainesville, Fla., USA 1966).Google Scholar
  25. Polley, M. J. and H. J. Müller-Eberhard, Chemistry and Mechanism of Action of Complement. Progr. Hemat. 5, 1 (1966).Google Scholar
  26. Rapp, H. J., and T. Borsos, Complement Research; Fundamental and Applied. J. Amer. med. Ass. 198, 1347 (1966). Complement: Prot. biol. Fluids 15, 383 (1967).Google Scholar
  27. Cooper, N. R. and B. J. Fogel, Complement in normal and disease processes. J. Pediat. 70, 982 (1967)PubMedGoogle Scholar
  28. Klein, P., Struktur und Funktion des Komplementsystems. Bibl, haemat. 27, 62 (1967).Google Scholar
  29. Gewurz, H., R. J. Pickering, D. S. Clark, A. R. Page, J. Finstad and R. A. Good, The complement system in the prevention, mediation and diagnosis of disease, and its usefulness in determination of immunopathogenetic mechanisms. In: Immunologic deficiency diseases in Man. (Good, R. A., Bergsma, D., eds.) Birth Defects Original Article Series 4, No. 1 (1968).Google Scholar
  30. Klein, P., Das Komplementsystem: Modellvorstellung und biologische Wertigkeit. Allergie- und Immunitätsforschung Vol. II, 143 (1968).Google Scholar
  31. Müller-Eberhard, H. J.,Chemistry and Reaction Mechanism of Complement. Adv. Immunol. 8, 1 (1968 a).PubMedGoogle Scholar
  32. Müller-Eberhard, H. J., The possible use of complement for the detection of cell surface antigens. Cancer Res. 28, 1357 (1968 b).PubMedGoogle Scholar
  33. Müller-Eberhard, H. J., V. A. Bokisch and D. B. Budzko, The molecular basis of the biological functions of complement. Excerpta Medica International Congress Series No. 162. Allergology, 1968, 379.Google Scholar
  34. Schur, P. H. and K. F. Austen, Complement in human disease. Ann. Rev. Med. 19, 1 (1968).PubMedGoogle Scholar
  35. Müller-Eberhard, H. J, Complement. Ann. Rev. Biochem. 38, 389 (1969 a).PubMedGoogle Scholar
  36. Müller-Eberhard, H. J., The serum complement system. In: Textbook of Immunopathology. Eds. P. A. Miescher and H. J. Müller-Eberhard. Vol. 1, 33 (New York and London 1969 b).Google Scholar
  37. Riethmüller, G., Zur Pathophysiologie und Klinik des Komplements. Klin. Wschr. 47, 1 (1969). A Discussion on triggered enzyme systems in blood plasma. E. Complement. F. The relation of complement to other systems. Proc. Roy. Soc. B. 173, 371 (1969).PubMedGoogle Scholar
  38. Rapp, H. J. and T. Borsos, Molecular basis of complement action. Appleton, Century-Crofts (New York, 1970).Google Scholar
  39. Mayer, M. M., Highlights of complement research during the past twenty-five years. Immunochemistry 7, 485 (1970).PubMedGoogle Scholar
  40. Vroon, D. H., D. R. Schultz and R. M. Zarco, The separation of nine components and two inactivators of components of complement in human serum. Immunochemistry 7, 43 (1970).PubMedGoogle Scholar
  41. Klein, P. und U. Hadding, Neuere Erkenntnisse der Komplementforschung. Arzneim.-Forsch. 20, 167 (1970).Google Scholar
  42. Wellensiek, H. J., Das Komplement-System. Verh. Dtsch. Ges. Pathol. 54, 37 (Stuttgart 1970).PubMedGoogle Scholar
  43. MüllerEberhard, H. J., Biochemistry of complement. Progress in Immunology p. 553 (Basel 1971). B. Amos ed., Academic Press New York and London.Google Scholar
  44. Schultz, D. R., The complement system. Monographs in Allergy 6 (Basel, London, New York 1971).Google Scholar
  45. Hadding, U., Das Komplement: Vermittlungssystem für humorale Abwehrleistung und allergische Entzündung. Hautarzt 23, 1 (1972).PubMedGoogle Scholar
  46. Kurzfassungen von Vorträgen 1. Complement Workshop I. Science 141, 738 (1963). 2. Complement Workshop II. Immunochemistry 3, 495 (1966). 3. Complement Workshop III. J. Immunol. 101, 810 (1968). 4. Int. Komplement Symposion. Z. med. Mikrobiol. Immunol. 155, 93 (1969). 5. USA Japan Complement Seminar. J. Immunol. 102, 1336 (1969). 6. Complement Workshop IV. J. Immunol. 107, 309 (1971).Google Scholar
  47. Alper, C. A., A. M. Johnson, A. G. Birtsch and F. E. Moore, Human C3: Evidence for the liver as the primary site of synthesis. Science 163, 286–288 (1969).PubMedGoogle Scholar
  48. Asofsky, R. and G. J. Thorbecke, Sites of formation of immune globulins and of a component of C3. II. Production of immunoelectrophoretically identified serum proteins by human and monkey tissues in vitro. J. exp. Med. 114, 471–483 (1961).PubMedGoogle Scholar
  49. Bach, S., S. Ruddy, J. A. Macharen and K. F. Austen, Electrophoretic polymorphism of the fourth component of human complement (C 4) in paired maternal and foetal plasma. Immunology 21, 869 (1971).PubMedGoogle Scholar
  50. Colten,H. R., T. Borsos and H. J Rapp, In vitro synthesis of the first component of complement by guinea pig small intestine. Proc. Nat. Acad. Sei. 56, 1158 (1966).Google Scholar
  51. Colten, H. R., J. M. Gordon, H. J. Rapp and T. Borsos, Synthesis of the first component of guinea pig complement by columnar epithelial cells of the small intestine. J. Immunol. 100, 788 (1968).PubMedGoogle Scholar
  52. Colten, H. R., J. M. Gordon, T. Borsos and H. J. Rapp, Synthesis of the first component of human complement in vitro. J. exp. Med. 128, 595 (1968).PubMedGoogle Scholar
  53. Geiger, H., N. Day and R. A. Good, Ontogenetic development and synthesis of hemolytic C8 by piglet tissues. J. Immunol. 108, 1092 (1972).PubMedGoogle Scholar
  54. Gewurz, H., R. J. Pickering, C. L. Christian, R. Snyderman, S. E. Mergenhagen and R. A. Good, Decreased C1q protein concentration and agglutinating activity in agammaglobulinemia syndromes: An inborn error reflected in the complement system. Clin. exp. Immunol. 3, 437 (1968).PubMedGoogle Scholar
  55. Hochwald, G. M., G. J. Thorbecke and R. Asofsky, Sites of formation of immune globulins and of a component of C3. I. A new technique for the demonstration of the synthesis of individual serum proteins by tissues in vitro. J. exp. Med. 114, 459 (1961).PubMedGoogle Scholar
  56. Jensen, J. A., In vitro synthesis of C4 by guinea pig liver. Fed. Proc. 28, 497 (1969).Google Scholar
  57. Jerne, N. and A. A. Nordin, Plaque formation in agar by single antibody producing cells. Science 140, 405 (1963).Google Scholar
  58. Jerne, N. K., A. A. Nordin and C. Henry, The agar plaque technique for recognizing antibody-producing cells. In: Amos and Koprowski conference on cell- bound antibodies, pp. 109–122 (Philadelphia 1963Google Scholar
  59. Kohler, P. F. and H. J. MüllerEberhard, Complement-Immunoglobulin relation Deficiency of C1q associated with impaired immunoglobulin G synthesis. Science 163, 474 (1969).PubMedGoogle Scholar
  60. Littleton, C., D. Kessler and P. M. Burkholder, Cellular basis for synthesis of the fourth component of guinea pig complement as determined by a haemolytic plaque technique. Immunology 18, 693 (1970).PubMedGoogle Scholar
  61. Perlmann, P., H. Perlmann, H. J. Müller-Eberhard and J. A. Manni, Cytotoxic effects of leucocytes triggered by complement bound to target cells. Science 163, 937 (1969).PubMedGoogle Scholar
  62. Phillips, M. E., U. A. Rother, K. O. Rother and G. J. Thorbecke, Studies on the serum proteins of chimeras. III. Detection of donor-type C5 in allogeneic and congenic post irradiation chimeras. Immunology 17, 315 (1969).PubMedGoogle Scholar
  63. Propp, R. P. and C. A. Alper, C3 synthesis in the human fetus and lack of transplacental passage. Science 162, 672 (1968).PubMedGoogle Scholar
  64. Rommel, F. A., M. B. Goldlust, F. C. Bancroft, M. M. Mayer and A. H. Tashjian, Synthesis of the ninth component of complement by a clonal strain of rat hepatoma cells. J. Immunol. 105, 396 (1970).PubMedGoogle Scholar
  65. Rother, K., U. Rother, M. E. Phillips, O. Goetze and J. G. Thorbecke, Further studies on sites of production of C-components. J. Immunol. 101, 814 (1968).Google Scholar
  66. Rother, U., G. J. Thorbecke, V. J. Stecher-Levin, J. Hurlimann and K. Rother, Formation of C6 by rabbit liver tissue in vitro. Immunology 14, 649 (1968).PubMedGoogle Scholar
  67. Rubin, D. J., T. Borsos, H. J. Rapp and H. R. Colten, Synthesis of the second component of guinea pig complement in vitro. J. Immun. 106, 295 (1971).PubMedGoogle Scholar
  68. Siboo, R. and S. I. Vas, Studies on in vitro antibody production. III. Production of complement. Canad. J. Microbiol. 11, 415 (1965).Google Scholar
  69. Stecher, V. J. and G. J. Thorbecke, Sites of synthesis of serum proteins. I. Serum proteins produced by macrophages in vitro. J. Immunol. 99, 643 (1967 a).PubMedGoogle Scholar
  70. Stecher, V. J. and G. J. Thorbecke, Sites of synthesis of serum proteins. II. Medium requirements for serum protein production by rat macrophages. J. Immunol. 99, 653 (1967 b).PubMedGoogle Scholar
  71. Stecher, V. J. and G. J. Thorbecke, Sites of synthesis of serum proteins. III. Production of ß1c, ß1E and transferrin by primate and rodent cell lines. J. Immunol. 99, 660 (1967 c).PubMedGoogle Scholar
  72. Stecher, V. J and G. J. Thorbecke, ß1c and immune globulin formation in vitro by tissues from germ-free and conventional rodents of various ages. Immunology 12, 475–487 (1967 d).PubMedGoogle Scholar
  73. Thorbecke, G. J., G. M. Hochwald, R. V. Furth, H. J. MüllerEberhard and E. B. Jacobson, Problems in determining the sites of synthesis of complement components. In: Ciba Foundation Symposium on Complement; G. E. W. Wolstenholme and J. Knight eds., p. 99–119 (London 1965).Google Scholar
  74. Wyatt, H. V., H. R. Colten and T. Borsos, Production of the second (C2) and fourth (C4) components of guinea pig complement by single peritoneal cells: Evidence that one cell may produce both components. J. Immunol. 108, 1609 (1972).PubMedGoogle Scholar
  75. Barbaro, J F., Demonstration of a hemolytically active 11S component of rabbit, guinea pig and human serum by means of antigen-antibody precipitates. Nature 199, 819 (1963).PubMedGoogle Scholar
  76. Becker, E. L., Concerning the mechanism of complement action. V. The early steps in immune hemolysis. J. Immunol. 84, 299 (1960).PubMedGoogle Scholar
  77. Becker, E. L., Concerning the mechanism of complement action. IV. The properties of the activated first component of guinea pig complement. J. Immunol. 82, 43 (1959).PubMedGoogle Scholar
  78. Becker, E. L., Concerning the mechanism of complement action. I. Inhibition of complement activity by diisopropyl fluorophosphate. J. Immunol. 77, 462 (1956).PubMedGoogle Scholar
  79. Colten, H. R., T. Borsos, H. E. Bond and H. J Rapp, Purification of the first component of complement by zonal ultrazentrifugation and of the second by electrofocusing. J. Immunol. 102, 1336 (1969).Google Scholar
  80. Colten, H. R., T. Borsos and H. J. Rapp, Reversible loss of activity of the first component of complement (C’1) as a function of ionic strength. J. Immunol. 100, 799 (1968 a).PubMedGoogle Scholar
  81. Colten, H. R., T. Borsos and H. J Rapp, Ultrazentrifugation of the first component of complement: effects of ionic strength. J. Immunol. 100, 808 (1968 b).PubMedGoogle Scholar
  82. de Bracco, M. and R. M. Stroud, Human Clr, purification and assay based on its linking role. J. Immunol. 107, 310 (1971).Google Scholar
  83. Haines, A. L. and I. H. Lepow, Studies on human C1-esterase. I. Purification and enzymatic properties. J. Immunol. 92, 456 (1964 a).PubMedGoogle Scholar
  84. Haines, A. L. and I. H. Lepow, Studies on human Cl-esterase. II. Function of purified C1-esterase in the human complement system. J. Immunol. 92, 468 (1964 b).PubMedGoogle Scholar
  85. Haines, A. L. and I. H. Lepow, Studies on human C1-esterase. III. Effect of rabbit anti-C1-esterase on enzymatic and complement activities. J. Immunol. 92, 479 (1964 c).PubMedGoogle Scholar
  86. Klein, P., Untersuchungen über den Angriffspunkt von gerinnungshemmenden Stoffen am Komplement. Z. Hyg. Infektionskrankh. 142, 457 (1956).Google Scholar
  87. Klein, P. und A. Lange: Über die Reaktivierung von Komplement nach Vergiftung durch hochmolekulare Antikoagulantien. Z. Hyg. Infektionskrankh. 142, 445 (1956).Google Scholar
  88. Lepow, J. H., O. D. Ratnoff, F. S. Rosen and L. Pillemer, Observations on a proesterase associated with partially purified first component of human complement. Proc. Soc. Exp. Biol. Med. 92, 32 (1956).PubMedGoogle Scholar
  89. Lepow, I. H., Studies on antibodies to human Cl-esterase. Ann. N. Y. Acad. Sei. 103, 829 (1963).Google Scholar
  90. Lepow, I. H., G. B. Naff, E. W. Todd, J. Pensky and C. F. Hinz, Chromatographic resolution of the first component of human complement into three activities. J. exp. Med. 117, 983 (1963).PubMedGoogle Scholar
  91. Lepow, I. H., G. B. Naff and J. Pensky, Mechanisms of activation of Cl and inhibition of Cl-esterase. In “Ciba Found. Symp., Complement” (G. E. W. Wolstenholme and J. Knight, eds.) Churchill, London p. 74 (1965).Google Scholar
  92. Levine, L., Inhibition of immune hemolysis by diisopropyl fluorophosphate. Biochim. Biophys. Acta 18, 283 (1955).PubMedGoogle Scholar
  93. Morse, J. H. and C. L. Christian, Immunological studies of the 11S protein component of the human complement system. J. exp. Med. 119, 195 (1964).PubMedGoogle Scholar
  94. Müller-Eberhard, H. J., Biochemistry of complement. Progress in Immunology p. 553 (1971). B. Amos ed., Academic Press New York and London.Google Scholar
  95. Müller-Eberhard, H. J, Complement. Ann. Rev. Biochem. 38, 389 (1969).PubMedGoogle Scholar
  96. Müller-Eberhard, H. J., Chemistry and Reaction Mechanism of Complement. Advan. Immunol. 8, 1 (1968).Google Scholar
  97. Müller-Eberhard, H. J. and I. H. Lepow, C’1 esterase effect on activity and physicochemical properties of the fourth component of complement. J. exp. Med. 121, 819 (1965).Google Scholar
  98. Müller-Eberhard, H. J. and H. G. Kunkel, Isolation of a thermolabile serum protein which precipitates γ-G1obu1in aggregates and participates in immune hemolysis. Proc. Soc. Exp. Biol. Med. 106, 291 (1961).PubMedGoogle Scholar
  99. Naff, G. B., J Pensky and I. H. Lepow, The macromolecular nature of the first component of human complement. J. exp. Med. 119, 593 (1964).PubMedGoogle Scholar
  100. Naff, G. B. and O. D. Ratnoff, The enzymatic nature of C’1r. Conversion of C’1s to C’1 esterase and digestion of amino acid esters by C’1r. J. exp. Med. 128, 571 (1968).PubMedGoogle Scholar
  101. Nagaki, K. and R. M. Stroud, Studies on active C1s; purification and correlation of hemolytic and esterase activity. J. Immunol. 101, 810 (1968).Google Scholar
  102. Nagaki, K. and R. M. Stroud, Specific antisera to C1s: Detection of different electrophoretic species of Cls. J. Immunol. 103, 141 (1969).Google Scholar
  103. Nelson, R. A., The role of complement in immune phenomena. In: The Inflammatory Process. B. W. Zweifach, R. T. McCluskey, L. H. Grant eds., p. 819 (New York 1965).Google Scholar
  104. Netter, H., Theoretische Biochemie (Berlin, Göttingen, Heidelberg 1959).Google Scholar
  105. Opferkuch, W., Physical and functional properties of guinea pig C’l. Prot. biol. Fluids 15, 459 (1967).Google Scholar
  106. Okuda, T. and T. Tachibana, Specific antibody against the first component of guinea pig complement. J. Immunol. 106, 564 (1971).PubMedGoogle Scholar
  107. Ratnoff, O. D. and I. H. Lepow, Some properties of an esterase derived from preparations of the first component of complement. J. exp. Med. 106, 327 (1957).PubMedGoogle Scholar
  108. Röllinghoff, M., H. Wagner und R. Ringelmann, Charakterisierung der C1-Esterase und ihrer Substrate. Hoppe-Seylers Z. physiol. Chem. 350, 1180 (1969).Google Scholar
  109. Sassano, F. G., H. R. Colten, T. Borsos and H. J. Rapp, Resolution of the first component of guinea pig complement into three subunits, C1q, C1r and Cls, and their hybridization with human Cl subunits. Immunochemistry 9, 405 (1972).PubMedGoogle Scholar
  110. Shelton, E., K. Yonemasu and R. M. Stroud, Ultrastructure of the human complement component, Clq. Proc. Nat. Acad. Sci. USA 69, 65 (1972).PubMedGoogle Scholar
  111. Svehag, S. E. and B. Bloth, The ultrastructure of human Clq. Acta path, microbiol. scand. B 78, 260 (1970).Google Scholar
  112. Tamura, N. and R. A. Nelson, The purification and reactivity of the first component of complement from guinea pig, human and canine sera. J. Immunol. 101, 1333 (1968).PubMedGoogle Scholar
  113. Taranta, A., H. S. Weiss and E. C. Franklin, Precipitating factor for aggregated γ-Globulin in normal human sera. Nature 189, 239 (1961).PubMedGoogle Scholar
  114. Wagner, H., M. Röllinghoff und R. Ringelmann, Die kompetitive Hemmung der Cl- Esterase. Hoppe-Seylers Z. physiol. Chem. 350, 1180 (1969).Google Scholar
  115. Wunderlich, R. und R. Ringelmann, Eine Methode zur spezifischen Reinigung der ersten Komplementkomponente C1. Med. Microbiol. Immunol. 157, 120 (1972).PubMedGoogle Scholar
  116. Yonemasu, K. and R. M. Stroud, Structural studies on human Clq: Non-covalent and covalent subunits. Immunochemistry 9, 545 (1972).PubMedGoogle Scholar
  117. Yonemasu, K. and S. Stroud, Clq: Rapid purification method for preparation of mono specific antisera and for biochemical studies. J. Immunol. 106, 304 (1971).PubMedGoogle Scholar
  118. Yonemasu, K., R. M. Stroud, W. Niedermeier and W. T. Butler, Chemical studies on Clq; a modulator of immunoglobulin biology. Biochem. Biophys. Res. Commun. 43, 1388 (1971).PubMedGoogle Scholar
  119. Bach, S., S. Ruddy, J. A. Macharen and K. F. Austen, Electrophoretic polymorphism of the fourth component of human complement (C4) in paired maternal and foetal plasmas. Immunology 21, 869 (1971).PubMedGoogle Scholar
  120. Dalmasso, A. P. and H. JMüller-Eberhard, Hemolytic activity of lipoprotein-depleted serum and the effect of certain anions on complement. J. Immunol. 97, 680 (1966).PubMedGoogle Scholar
  121. Ecker, E. E., L. Pillemer and S. Seif ter, Immunochemical studies on human serum. I. Human complement and its components. J. Immunol. 47, 181 (1943).Google Scholar
  122. Gordon, J., H. R. Whitehead and A. Wormall, The action of ammonia on complement. The fourth component. J. Biochem. 20, 1028 (1926).Google Scholar
  123. Haupt, H., K. Heide und H. G. Schwick, Isolierung und Kristallisation von ß1E-Globulin aus Humanserum. Klin. Wschr. 48, 550 (1970).PubMedGoogle Scholar
  124. Hiramatsu, S., K. Nagaki, S. Inai and S. Tanabe, Immuno- electrophoretic studies on ß1E-globulin in human serum. Biken J. 10, 175 (1967).PubMedGoogle Scholar
  125. Inai, S., S. Hiramatsu and K. Nagaki, Separation of C4 from C1 inactivator and purification of both substances. Biken J. 10, 155 (1967).PubMedGoogle Scholar
  126. Laurell, C. B., Antigen-antibody crossed electrophoresis. Analyt. Biochem. 10, 358 (1965).PubMedGoogle Scholar
  127. Müller-Eberhard, H. J. and C. E. Biro, Isolation and description of the fourth component of human complement. J. Exp. Med. 118, 447 (1963).Google Scholar
  128. Müller-Eberhard, H. J, Chemistry and reaction mechanism of complement. Advan. Immunol. 8, 1 (1968).Google Scholar
  129. Nelson, R. A., J. Jensen, I. Gigli and N. Tamura, Methods for the separation, purification and measurement of nine components of hemolytic complement in guinea-pig serum. Immunochemistry 3, 111 (1966).PubMedGoogle Scholar
  130. Röllinghoff, M. and R. Ringelmann, Characterization of the purified fourth component of guinea pig complement. Prot. Biol. Fluids 17, 315 (1969).Google Scholar
  131. Rosenfeld, S. I, S. Ruddy and K. F. Austen, Structural polymorphism of the fourth component of human complement. J. Clin. Invest. 48, 2283 (1969).PubMedGoogle Scholar
  132. Seifter, S., E. Katchalski and D. M. Harkness, Effects of hydroxylamine on complement. Fed. Proc. 22, 612 (1963).Google Scholar
  133. Andrews, P., The gel-filtration behavior of proteins related to their molecular weights over a wide range. Biochem. J. 96, 595 (1965).PubMedGoogle Scholar
  134. Borsos, T. and H. J Rapp, Estimation of molecular size of complement components by Sephadex chromatography. J. Immunol. 94, 510 (1965).PubMedGoogle Scholar
  135. Borsos, T., H. J. Rapp and C. T. Cook, Studies on the second component of complement. III. Separation of the second component from guinea pig serum by chromatography on cellulose derivatives. J. Immunol. 87, 330 (1961).Google Scholar
  136. Cooper, N. R., M. J. Polley and H. J Müller-Eberhard, The second component of human complement (C2) : Quantitative molecular analysis of its reaction in immune hemolysis. Immunochemistry 7, 341 (1970)PubMedGoogle Scholar
  137. Leon, M. A., Complement: Inactivation of second component by hydroxy- mercuribenzoate. Science 147, 1034 (1965).PubMedGoogle Scholar
  138. Mayer, M. M., J. A. Miller and H. S. Shin, A specific method for purification of the second component of guinea pig complement and a chemical evaluation of the one-hit theory. J. Immunol. 105, 327 (1970).PubMedGoogle Scholar
  139. Polley, M. J. and H. J. Müller-Eberhard, The role of protein bound sulfur in the reactions of C2, C3 and C5 of human complement. Z. med. Mikrobiol. u. Immunol. 155, 98 (1969).Google Scholar
  140. Polley, M. J. and H. J. Müller-Eberhard, The second component of human complement: Its isolation, fragmentation by ć1 esterase, and incorporation into ć3 convertase. J. exp. Med. 128, 533 (1968).PubMedGoogle Scholar
  141. Polley, M. J. and H. J. Müller-Eberhard, Enhancement of the hemolytic activity of the second component of human complement by oxidation. J. exp. Med. 126, 1013 (1967).PubMedGoogle Scholar
  142. Sitomer, G., R. M. Stroud and M. M. Mayer, Reversible adsorption of C2 by EAC4: Role of Mg++, enumeration of competent SAC′4, two step nature of C′2a fixation and estimation of its efficiency. Immunochemistry 3, 57 (1966).PubMedGoogle Scholar
  143. Stroud, R. M., M. M. Mayer, J. A. Miller and A. T. McKenzie, C2ad, an inactive derivative of C2 released during decay of EAC4,2a. Immunochemistry 3, 163 (1966).PubMedGoogle Scholar
  144. Wagner, H. and M. Röllinghoff, C2 The second component of guinea pig complement: Purification and physicochemical characterization. Immunochemistry 7, 977 (1970).PubMedGoogle Scholar
  145. Wyman, J. Jr. and E. N. Ingalls, A nomographic representation of certain properties of the proteins. J. Biol. Chem. 147, 297 (1943).Google Scholar
  146. Alper, C. A., N. I. Robin and S. Refetoff, Genetic polymorphism in rhesus C3 and Gc globulin. J. Immunol. 107, 96 (1971).PubMedGoogle Scholar
  147. Alper, C. A., A. M. Johnson, A. G. Birtch and F.. D. Moore, Human C3: Evidence for the liver as the primary site of synthesis. Science 163, 286 (1969).PubMedGoogle Scholar
  148. Alper, C. A., R. P. Propp and L. Watson, Genetic polymorphism of the third component of human complement (C3). J. Clin. Invest. 47, 2181 (1968).PubMedGoogle Scholar
  149. Azen, E. A. and O. Smithies, Genetic polymorphism of C3 (ßlc globulin) in human serum. Science 162, 905 (1968).PubMedGoogle Scholar
  150. Bitter-Suermann, D., U. Hadding, F. Melchert and H. J. Wellensiek, Independent and consecutive action of C5, C6 and C7 in immune hemolysis. I. Preparation of EAC1–5 with purified guinea pig C3 and C5. Immunochemistry 7, 955 (1970).PubMedGoogle Scholar
  151. Budzko, D. B., V. A. Bokisch and H. J Müller-Eberhard, A fragment of the third component of human complement with anaphylatoxin activity. Biochemistry 10, 1166 (1971).PubMedGoogle Scholar
  152. Colten, H. R. and C. A. Alper, Hemolytic efficiencies of genetic variants of human C3. J. Immunol. 108, 1184 (1972).PubMedGoogle Scholar
  153. Dalmasso, A. P. and H. J. Müller-Eberhard, Hemolytic activity of lipoprotein-depleted serum and the effect of certain anions on complement. J. Immunol. 97, 680 (1966).PubMedGoogle Scholar
  154. Klein, P. G. and H. J. Wellensiek, Multiple nature of the third component of guinea pig complement. I. Separation and characterization of three factors a, b and c, essential for haemolysis. Immunology 8, 590 (1965).PubMedGoogle Scholar
  155. Kohler, P. F. and H. J. Müller-Eberhard, Immunochemical quantitation of the third, fourth and fifth components of human complement. Concentration in the serum of healthy adults. J. Immunol. 99, 1211 (1967).PubMedGoogle Scholar
  156. Linscott,W.D. and C.G. Cochrane, Guinea pig ß1c-globulin: its relationship to the third component of complement and its alteration following interaction with immune complexes. J. Immunol. 93, 972 (1964).PubMedGoogle Scholar
  157. Mardiney, M. R. Jr. and H. J. Müller-Eberhard, Mouse ßlc-globulin: production of antiserum and characterization in the complement reaction. J. Immunol. 94, 877 (1965).PubMedGoogle Scholar
  158. Müller-Eberhard, H. J., Isolation and description of proteins related to the human complement system. Acta Soc. Med. Upsal. 66, 152 (1961).PubMedGoogle Scholar
  159. Müller-Eberhard, H. J. and U. Nilsson, Relation of a ß1-glycoprotein of human serum to the complement system. J. Exp. Med. 111, 217 (1960).PubMedGoogle Scholar
  160. Müller-Eberhard, H. J., U. Nilsson and T. Aronsson, Isolation and characterization of two ßl-glycoproteins of human serum. J. Exp. Med. Ill, 201 (1960).Google Scholar
  161. Nelson, R. A., J. Jensen, I. Gigli and N. Tamura, Methods for the separation, purification and measurement of nine components of hemolytic complement in guinea-pig serum. Immunochemistry 3, 111 (1966).PubMedGoogle Scholar
  162. Petz, L.. D., D. J. Fink, E. A. Letsky, H. H. Fuden- berg and H. J. Müller-Eberhard, In vitro metabolism of complement. I. Metabolism of the third component (C3) in acquired hemolytic anemia. J. Clin. Invest. 47, 2469 (1968).Google Scholar
  163. Polley, M. J. and H. J. Müller-Eberhard, The role of protein bound sulfur in the reactions of C2, C3 and C5 of human complement. 2. Med. Mikrobiol. Immunol. 155, 98 (1969).Google Scholar
  164. Pondman, K. W., A. Hannema and G. Wolters, C3-consumption in immune reactions. J. Immunol. 107, 314 (1971).Google Scholar
  165. Propp, R. P. and C. A. Alper, Rabbit C3: isolation and characterization of reactions in vitro and during in vivo antigen-antibody interaction. Immunology 17, 695 (1969).PubMedGoogle Scholar
  166. Shin, H. S. and M. M. Mayer, The third component of the guinea pig complement system. J. Purification and characterization. Biochemistry 7, 2991 (1968).PubMedGoogle Scholar
  167. Spitzer, R. E., A. E. Stitzel, V. L. Pauling, N. C. Davis and C. D. West, The antigenic and molecular alterations of C3 in the fluid phase during an immune reaction in normal human serum. Demonstration of a new conversion product, C3x. J. Exp. Med. 134, 656 (1971).PubMedGoogle Scholar
  168. Taylor, A. B. and M. A. Leon, Kinetics of human complement. IV. Kinetics of the inactivation of the C3-complex by hydrazine. J. Immunol. 83, 284 (1959).PubMedGoogle Scholar
  169. West, C. D., S. Winter, J. Forristal and N. C. Davis, Effect of aging of serum on consumption of antibody by ßlc-globulin determinants; evidence for circulating breakdown products in glomerulonephritis. Clin. Exp. Immunol. 3, 1 (1968).Google Scholar
  170. West, C. D., N. C. Davis, J. Forristal, J. Herbst and R. Spitzer, Antigenic determinants of ßlc- and ß1G-globulins. J. Immunol. 96, 650 (1966).PubMedGoogle Scholar
  171. Wieme, R. J., L. Demeulenaere and J. Segers, Familial occurence of electrophoretic C3 variants in man. Prot. Biol. Fluids 15, 499 (1967).Google Scholar
  172. Wieme, R. J. and L. Demeulenaere, Genetically determined electrophoretic variant of the human complement component C3. Nature 214, 1042 (1967).PubMedGoogle Scholar
  173. Wieme, R. J. and J. Segers, Genetic polymorphism of the complement component C3 in a Bantu population. Nature 220, 176 (1968).PubMedGoogle Scholar
  174. Wolters, G., W. den Hartog, M. Mulder and K. W. Pondman, Relationship of antigenic determinants of C3 globulin in vaso-active fragments derived from C3. 2. Med. Mikrobiol. u. Immunol. 155, 97 (1969).Google Scholar
  175. Yonemasu, K. and K. Inoue, Studies on the third component (C3) of guinea pig complement. I. Purification and characterization. Biken J. 11, 169 (1968).Google Scholar
  176. Arroyave, C. M. and H. J. Müller-Eberhard, Isolation of the sixth component of complement from human serum. Immunochemistry 8, 995 (1971).PubMedGoogle Scholar
  177. Bitter-Suermann, D., U. Hadding, F. Melchert and H. J. Wellensiek, Independent and consecutive action of C5, C6 and C7 in immune hemolysis. I. Preparation of EAC1–5 with purified guinea pig C3 and C5. Immunochemistry 7, 955 (1970).PubMedGoogle Scholar
  178. Cook, C. T., H. S. Shin, M. M. Mayer and K. A. Laudenslayer, The fifth component of the guinea pig complement system. I. Purification and characterization. J. Immun. 106, 467 (1971).PubMedGoogle Scholar
  179. Dalmasso, A. P. and H. J. Müller-Eberhard, Hemolytic activity of lipoprotein-depleted serum and the effect of certain anions on complement. J. Immunol. 97, 680 (1966).PubMedGoogle Scholar
  180. Hadding, U. and H. J. Müller-Eberhard, The ninth component of human complement: Isolation, description and mode of action. Immunology 16, 719 (1969).PubMedGoogle Scholar
  181. Hadding, U., H. J. Müller-Eberhard and A. P. Dalmasso, Isolation of the terminal component of human complement. Fed. Proc. 25, 485 (1966).Google Scholar
  182. Inoue, K., T. Mori and K. Yonemasu, Studies on the C3d of guinea pig complement. Biken J. 10, 143 (1967).PubMedGoogle Scholar
  183. Inoue, K. and R. A. Nelson, The isolation and characterization of a ninth component of hemolytic complement, C3f. J. Immunol. 96, 386 (1966).PubMedGoogle Scholar
  184. Inoue, K. and R. A. Nelson, The isolation and characterization of a new component of hemolytic complement, C3e. J. Immunol. 95, 355 (1965).PubMedGoogle Scholar
  185. Klein, P. G. and H. J. Wellensiek, Multiple nature of the third component of guinea pig complement. I. Separation and characterization of three factors a, b and c, essential for haemolysis. Immunology 8, 590 (1965).PubMedGoogle Scholar
  186. König, W., D. Bitter-Suermann, M. Dierich and U. Hadding, Physicochemical characterization of the fifth (C5), sixth (C6), seventh (C7), eighth (C8) and ninth (C9) component of guinea pig complement. Eur. J. Immunol. 1, 372 (1971).PubMedGoogle Scholar
  187. Kohler, P. F. and H. J. Müller-Eberhard, Immunochemical quantitation of the third, fourth and fifth components of human complement. Concentration in the serum of healthy adults. J. Immunol. 99, 1211 (1967).PubMedGoogle Scholar
  188. Linscott, W. D. and K. Nishioka, Components of guinea pig complement. II. Separation of serum fractions essential for immune hemolysis. J. Exp. Med. 118, 795 (1963).PubMedGoogle Scholar
  189. Manni, J. A. and H. J. Müller-Eberhard, The eighth component of human complement (C8): Isolation, characterization, and hemolytic efficiency. J. Exp. Med. 130, 1145 (1969).PubMedGoogle Scholar
  190. Mayumi, M., Studies on the seventh component of complement: the mode of action of C7. Japan. J. Exp. Med. 40, 433 (1970).Google Scholar
  191. Müller-Eberhard, H. J., Chemistry and reaction mechanism of complement. Advan. Immunol. 8, 1 (1968).Google Scholar
  192. Nelson, R. A. jr., Proteins of the complement system and their biological function. Prot. Biol. Fluids 15, 385 (1967).Google Scholar
  193. Nelson, R. A., J. Jensen, I. Gigli and N. Tamura, Methods for the separation, purification and measurement of nine components of hemolytic complement in guinea pig serum. Immunochemistry 3, 111 (1966).PubMedGoogle Scholar
  194. Nilsson, U. R., R. H. Tomar and F. B. Taylor, Additional studies on human C5: Development of a modified purification method and characterization of the purified product by polyacrylamide gel electrophoresis. Immunochemistry 9, 709 (1972).PubMedGoogle Scholar
  195. Nilsson, U. and G. Heym, Studies on the chemical nature of the fifth component of human complement (C5). Fed. Proc. 28, 818 (1969).Google Scholar
  196. Nilsson, U., Separation and partial purification of the sixth, seventh and eighth components of human haemolytic complement. Acta path, microbiol. scand. 70, 469 (1967).Google Scholar
  197. Nilsson, U. R. and H. J. Müller-Eberhard, Studies on the mode of action of the fifth, sixth and seventh component of human complement in immune haemolysis. Immunology 13, 101 (1967).PubMedGoogle Scholar
  198. Nilsson, U. and H. J. Müller-Eberhard, Requirement of C3, C5, C6 and C7 for the formation of a thermostable intermediate complex between sheep erythrocytes and human complement. Immunochemistry 3, 500 (1966).Google Scholar
  199. Nilsson, U. R., and H. J. Müller-Eberhard, Isolation of ß1F globulin from human serum and its characterization as the fifth component of complement. J. Exp. Med. 122, 277 (1965).PubMedGoogle Scholar
  200. Nishioka, K. and W. D. Linscott, Components of guinea pig complement. I. Separation of a serum fraction essential for immune hemolysis and immune-adherence. J. Exp. Med. 118, 767 (1963).PubMedGoogle Scholar
  201. Polley, M. J. and H. J. Müller-Eberhard, The role of protein bound sulfur in the reactions of C2, C3 and C5 of human complement. 2. med. Mikrobiol. u. Immunol. 155, 98 (1969).Google Scholar
  202. Schultz, D. R. and R. M. Zarco, Inhibition of the eighth component of complement (C8) by ethylendiaminetetraacetate (EDTA). J. Immunol. 104, 279 (1970).PubMedGoogle Scholar
  203. Simard, J., G. Lehner-Netsch et J. M. del Age, Activité lipasique de C7. Rev. Canad. Biol. 28, 229 (1969).PubMedGoogle Scholar
  204. Stolfi, R. L., An analoque of guinea pig C8: in vitro generation and inhibitory activity. J. Immunol. 104, 1212 (1970).PubMedGoogle Scholar
  205. Tamura, N. and A. Shimada, The ninth component of guinea-pig complement. Isolation and identification as an α2-globulin. Immunology 20, 415 (1971).PubMedGoogle Scholar
  206. Tedesco, F. and P. J. Lachmann, The quantitation of C6 in rabbit and human sera. Clin. Exp. Immunol. 9, 359 (1971).PubMedGoogle Scholar
  207. Thompson R. A. and P. J. Lachmann, Reactive Lysis: The complement-mediated lysis of unsensitized cells. I. The characterization of the indicator factor and its identification as C7. J. Exp. Med. 131, 629 (1970).PubMedGoogle Scholar
  208. Vroon, D. H., D. R. Schultz and R. M. Zarco, The separation of nine components and two inactivators of components of complement in human serum. Immunochemistry 7, 43 (1970).PubMedGoogle Scholar
  209. Wellensiek, H. J. and P. G. Klein, Multiple nature of the third component of guinea-pig complement. II. Separation and description of two additional factors ß and d; preparation and characterization of four intermediate products. Immunology 8, 604 (1965).PubMedGoogle Scholar
  210. Adinolfi, M., M. J. Polley, D. A. Hunter and P. L. Mollison, Classification of blood-group antibodies as ß2M or gamma-globulin. Immunology 5, 566 (1962).PubMedGoogle Scholar
  211. Amiraian, K. and E. J. Leikhim, Interaction of fragment III of rabbit gamma-globulin and guinea pig complement. Proc. Soc. Exp. Biol. Med. 108, 454 (1961).PubMedGoogle Scholar
  212. Augener, W., H. M. Grey, N. R. Cooper and H. J. Müller-Eberhard, The reaction of monomeric and aggregated immunoglobulins with C1. Immunochemistry 8, 1011 (1971).PubMedGoogle Scholar
  213. Borsos, T. and H. J. Rapp, Complement fixation on cell surfaces by 19S and 7S antibodies. Science 150, 505 (1965).PubMedGoogle Scholar
  214. Borsosy T., H. R. Colten, J. S. Spalter, N. Rogentine and H. J. Rapp, The C1 a fixation and transfer test: examples of its applicability to the detection and enumeration of antigens and antibodies at cell surfaces. J. Immunol. 101, 392 (1968).Google Scholar
  215. BoursnelllJ. C., R. R. A. Coombs and V. Rizky Studies with marked antisera. Quantitative studies with antisera marked with iodine 131 isotope and their corresponding red-cell antigens. Biochem. J. 55, 745 (1953).Google Scholar
  216. Colten, H. R., T. Borsos and H. J. Rapp, Complement fixation by different classes of immunoglobulins: The effect of temperature. Prot. Biol. Fluids 15, 471 (1967).Google Scholar
  217. Frank, M. M. and T. A. Gaither, Complement fixation by a single molecule of γG hemolysin. J. Immunol. 104, 1458 (1970 a).PubMedGoogle Scholar
  218. Frank, M. M. and T. A. Gaither, The effect of temperature on the reactivity of guinea-pig complement with γG and γM haemolytic antibodies. Immunology 19, 967 (1970 b).PubMedGoogle Scholar
  219. Hiramatsu, S., I. Tsuyuguchi and S. Inai, Lack of binding of complement by IgD. Biken J. 12, 43 (1969).PubMedGoogle Scholar
  220. Hoyer, L. W., T. Borsos, H. J. Rapp and W. E. Vannier, Heterogeneity of rabbit IgM antibody as detected by ć1a fixation. J. exp. Med. 127, 589 (1968).PubMedGoogle Scholar
  221. Humphrey, J. H. and R. R. Dourmashkin, Electron microscope studies of immune cell lysis. In: Ciba Foundation Symposium on Complement G. E. W. Wolstenholme and J Knight, eds. J. and A. Churchill, London, p. 175 (1965).Google Scholar
  222. Ishizaka, K T. Ishizaka and T. Sugahara, Biological activity of soluble antigen-antibody complexes. II Role of an Antibody fragment in the induction of biological activities. J. Immunol. 88, 690 (1962).Google Scholar
  223. Ishizaka, K., T. Ishizaka, T. Borsos and H. J Rapp, C′1 fixation by human isoagglutinins: Fixation of Cl by yG and γM but not by γA antibody. J. Immun. 97, 716 (1966).PubMedGoogle Scholar
  224. Ishizaka, K., T. Ishizaka and E. M. Lee, Biologic function of the Fc-fragments of E myeloma protein. Immunochemistry 7, 687 (1970).PubMedGoogle Scholar
  225. Ishizaka, T., T. Tada and K. Ishizaka, Fixation of C’ and C1 a by rabbit γG und γM antibodies with particulate and soluble antigens. J. Immun. 100, 1145 (1968).PubMedGoogle Scholar
  226. Ishizaka, T., K. Ishizaka, S. Salmon and H. Fudenberg, Biologic activities of aggregated immunoglobulins of different classes. Fed. Proc. 25, 489 (1966).Google Scholar
  227. Kehoe, J. M. and M. Fougereau, Immunoglobulin peptide with complement fixing activity. Nature 224, 1212 (1969).PubMedGoogle Scholar
  228. Masouredis, S. P., Relationship between Rho(D) genotype and quantity of I131 anti Rho(D) bound to red cells. J. Clin. Invest. 39, 1450 (1960).PubMedGoogle Scholar
  229. Möller, E. and G. J. Möller, Quantitative studies of the sensitivity of normal and neoplastic mouse cells to the cytotoxic action of isoantibodies. J. exp. Med. 115, 527 (1962).PubMedGoogle Scholar
  230. Plotz, P. H., H. Colten and N. Talal, Mouse macroglobulin antibody to sheep erythrocytes: A non-complement-fixing type. J. Immun. 100, 752 (1968).PubMedGoogle Scholar
  231. Polley, M. J. and P. L. Mollison, The role of complement in the detection of blood group antibodies; special reference to the antiglobulin test. Transfusion 1, 9 (1961).PubMedGoogle Scholar
  232. H. J. Rapp and T. Borsos, Forssman antigen and antibody: preparation of water soluble antigen and measurement of antibody concentration by precipitin analysis, by C’1 a fixation and by hemolytic activity. J. Immun. 96, 913 (1966).PubMedGoogle Scholar
  233. Rochna, E.M. and N. L. Hughes-Jones, The use of purified I125-labelled anti-γ-globulin in the determination of the number of D- antigen sites, on red cells of different phenotypes. Vox Sanguinis 10, 675 (1965).PubMedGoogle Scholar
  234. Rosse, W. F., H. J. Rapp and T. Borsos, Structural characteristics of hemolytic antibodies as determined by the effects of ionizing radiation. J. Immunol. 98, 1190 (1967).PubMedGoogle Scholar
  235. Sandberg, A. L. and B. D. Stollar, Comparisons of antibodies reating with DNA II. Rabbit antibodies induced by nucleosid-protein conjugates. J. Immunol. 96, 764 (1966).PubMedGoogle Scholar
  236. Schur, P. H. and G. D. Christian, The role of disulfide bonds in the complement-fixing and precipitating properties of 7S rabbit and sheep antibodies. J. exp. Med. 120, 531 (1964).PubMedGoogle Scholar
  237. Stanworth, D. R., IgE and reaginic antibodies. Proc. roy. Soc. Med. 62, 971 (1969).PubMedGoogle Scholar
  238. Stollard, B. D. and A. L. Sandberg, Comparisons of antibodies reacting with DNA: I. Systemic lupus erythematosus sera and rabbit antibodies induced by DNA-methylated bovine serum albumin complexes. J. Immunol. 96, 755 (1966).Google Scholar
  239. Stratton, F., Complement- fixing blood group antibodies with special reference to the nature of anti-Lea. Nature 190, 240 (1961).Google Scholar
  240. Taranta, A. and E. C. Franklin, Complement fixation by antibody fragments. Science 134, 1981 (1961).PubMedGoogle Scholar
  241. Wiedermann, G., P. A. Miescher and E. C. Franklin, Effect of mercaptoethanol on complement binding ability of human 7S gamma-globulin. Proc. Soc. Exp. Biol. Med. 113, 609 (1963).PubMedGoogle Scholar
  242. Wiedermann, G., Z. Ovary and P. A. Miescher, Influence of mercaptoethanol treatment on skin sensitizing and complement binding ability of 7S anti-dinitrophenol-bovine gamma-globulin antibody. Proc. Soc. Exp. Biol. Med. 116, 448 (1964).PubMedGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag, Darmstadt 1974

Authors and Affiliations

  • Klaus Rother
    • 1
  1. 1.Univ.-Institut für Immunologie und SerologieHeidelbergGermany

Personalised recommendations