Advertisement

Real-Time Adaptive Smoothing with a 1-D Nonlinear Relaxation Network in Analogue VLSI Technology

  • K. Wiehler
  • R.-R. Grigat
  • J. Heers
  • C. Schnörr
  • H. S. Stiehl
Part of the Informatik aktuell book series (INFORMAT)

Abstract

Reconstruction of given noisy data is an ill-posed problem and a computationally intensive task. Non-linear regularisation techniques are used to find a unique solution under certain constraints. In our contribution we present a parallel mixed-signal architecture which solves this non-linear problem within microseconds. By connecting all parallel cells in a circular manner it is possible to process noisy data vectors of infinite length. This is achieved by virtually shifting the non-linear adaptive filter kernel over the noisy data vector. A 1-D experimental chip has been fabricated using 0.8μxm CMOS technology. On-chip measurements are shown to agree with results from numerical simulations. Results from applying the 1-D chip to nonlinear smoothing of image data will also be given correspondence.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jose Pineda de Gyvez, Lei Wang, and E. Sanchez-Sinencio. Large-image CNN hardware processing using a time multiplexing scheme. In IEEE International Workshop on Cellular Neural Networks and their Applications, pages 405–410, 1996.Google Scholar
  2. 2.
    Peter Kinget and Michiel Steyaert. Analog VLSI integration of massive parallel signal processing systems. Kluwer Academic Publishers, 1997.Google Scholar
  3. 3.
    Carver Mead. Analog VLSI and Neural Systems. Addison-Wesley Computational and Neural Systems Series. Addison-Wesley Publishing Company, 1989.zbMATHCrossRefGoogle Scholar
  4. 4.
    C. Schnörr. Unique reconstruction of piecewise-smooth images by minimizing strictly convex nonquadratic functionals. Journal of Mathematical Imaging and Vision, 4: 189–198, 1994.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bing J. Sheu and Joongho Choi. Neural Information Processing and VLSI, chapter 14, pages 397–466. Kluwer Academic Publishers, 1995.Google Scholar
  6. 6.
    Klaus Wiehler, Ralph Lembcke, Rolf-Rainer Grigat, Josef Heers, Christoph Schnörr, and H.-Siegfried Stiehl. Dynamic circular cellular networks for adaptive smoothing of multi-dimensional signals. In IEEE International Workshop on Cellular Neural Networks and their Applications, London, 1998.Google Scholar
  7. 7.
    Ralf Wöbke. Störungsanalyse eines eindimensionalen nichtlinearen Relaxationsnetzwerks zur Signalverarbeitung. Diplomarbeit, Universität Hamburg, Fachbereich Informatik, Arbeitsbereich Kognitive Systeme, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • K. Wiehler
    • 1
  • R.-R. Grigat
    • 1
  • J. Heers
    • 2
  • C. Schnörr
    • 2
  • H. S. Stiehl
    • 2
  1. 1.Technische Informatik ITechnische Universität Hamburg-HarburgGermany
  2. 2.FB Informatik, AB Kognitive SystemeUniversität HamburgGermany

Personalised recommendations