Advertisement

Least Squares Fitting of Circle and Ellipse

  • Sung Joon Ahn
  • Wolfgang Rauh
  • Berend Oberdorfer
Part of the Informatik aktuell book series (INFORMAT)

Abstract

The least squares fitting of geometric features to given points minimizes the squares sum of error-of-fit in predefined measures. By the geometric fitting, the error distances are defined with the orthogonal, or shortest, distances from the given points to the geometric feature to be fitted. For the geometric fitting of circle and ellipse, robust algorithms are proposed which are based on the coordinate description of the corresponding point on the circle/ellipse for the given point, where the connecting line of the two points is the shortest path from the given point to the circle/ellipse.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. I. Chernov and G. A. Ososkov, Effective algorithms for circle fitting, Computer Physics Communications 33, 329–333 (1984).CrossRefGoogle Scholar
  2. 2.
    B. B. Chaudhuri and P. Kundu, Optimum circular fit to weighted data in multi-dimensional space, Pattern Recognition Letters 14, 1–6 (1993).CrossRefGoogle Scholar
  3. 3.
    F. L. Bookstein, Fitting Conic Sections to Scattered Data, CGIP 9, 56–71 (1979).Google Scholar
  4. 4.
    R. Safaee-Rad, I. Tchoukanov, B. Benhabib and K. C. Smith, Accurate Parameter Estimation of Quadric Curves from Grey-Level Images, CVGIP: Image Understanding 54 (2), 259–274 (1991).zbMATHCrossRefGoogle Scholar
  5. 5.
    P. L. Rosin, Analyzing Error of Fit Functions for Ellipses, Pattern Recognition Letters 17, 1461–1470 (1996).CrossRefGoogle Scholar
  6. 6.
    K. Kanatani, Statistical Bias of Conic Fitting and Renormalization, IEEE Trans. PAMI 16 (3), 320–326 (1994).zbMATHCrossRefGoogle Scholar
  7. 7.
    J. Cabrera and P. Meer, Unbiased Estimation of Ellipses by Bootstrapping, IEEE Trans. PAMI 18 (7), 752–756 (1996).CrossRefGoogle Scholar
  8. 8.
    A. W. Fitzgibbon, M. Pilu and R. B. Fisher, Direct Least Squares Fitting of Ellipses, Proc. 13th Int. Conf. on Pattern Recognition, Vienna, 253–257 (1996).Google Scholar
  9. 9.
    R. N. Goldman, Two Approaches to a Computer Model for Quadratic Surfaces, IEEE Computer Graphics amp Applications 3 (9), 21–24 (1983).CrossRefGoogle Scholar
  10. 10.
    DIN 32880-1, Koordinatenmefitechnik; Geometrische Grundlagen und Be griffe, Deutsche Norm, Beuth Verlag, Berlin (1986).Google Scholar
  11. 11.
    M. Berman, Large Sample Bias in Least Squares Estimators of a Circular Arc Center and Its Radius, CVGIP 45, 126–128 (1989).Google Scholar
  12. 12.
    A. vom Hemdt, Standardauswertung in der Koordinatenmefitechnik - Ein Beitrag zur Geometrieberechnung, Dissertation, RWTH Aachen, FRG (1989).Google Scholar
  13. 13.
    W. Gander, G. H. Golub and R. Strebel, Least-squares fitting of circles and ellipses, BIT 34, 558–578 (1994).MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Y. Cui, J. Weng and H. Reynolds, Estimation of ellipse parameters using optimal minimum variance estimator, Pattern Recognition Letters 17, 309–316 (1996).CrossRefGoogle Scholar
  15. 15.
    H. W. Sorenson, Parameter Estimation: Principles and Problems, Marcel Dekker, New York (1980).zbMATHGoogle Scholar
  16. 16.
    W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, Cambridge, UK (1988).zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Sung Joon Ahn
    • 1
  • Wolfgang Rauh
    • 1
  • Berend Oberdorfer
    • 1
  1. 1.Fraunhofer Institute for Manufacturing Engineering and Automation IPAStuttgartGermany

Personalised recommendations