Advertisement

Discrete Mixture Models for Unsupervised Image Segmentation

  • Jan Puzicha
  • Thomas Hofmann
  • Joachim M. Buhmann
Part of the Informatik aktuell book series (INFORMAT)

Abstract

This paper introduces a novel statistical mixture model for probabilistic clustering of histogram data and, more generally, for the analysis of discrete co-occurrence data. Adopting the maximum likelihood framework, an alternating maximization algorithm is derived which is combined with annealing techniques to overcome the inherent locality of alternating optimization schemes. We demonstrate an application of this method to the unsupervised segmentation of textured images based on local empirical distributions of Gabor coefficients. In order to accelerate the optimization process an efficient multiscale formulation is utilized. We present benchmark results on a representative set of Brodatz mondrians and real-world images.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Geman, S. Geman, C. Graffigne, and P. Dong. Boundary detection by constrained optimization. IEEE Trans. Pattern Analysis and Machine Intelligence, 12 (7): 609–628, 1990.CrossRefGoogle Scholar
  2. 2.
    F. Heitz, P. Perez, and P. Bouthemy. Multiscale minimization of global energy functions in some visual recovery problems. Computer Vision and Image Understanding, 59 (1): 125–134, 1994.CrossRefGoogle Scholar
  3. 3.
    T. Hofmann and J. Puzicha. Statistical models for co-occurrence data. AI-Memo 1625, MIT, 1998.Google Scholar
  4. 4.
    T. Hofmann, J. Puzicha, and J. Buhmann. Deterministic annealing for unsupervised texture segmentation. In Proc. EMMCVPR’97, LNCS 1223, pages 213–228, 1997.Google Scholar
  5. 5.
    A. Jain and F. Farrokhnia. Unsupervised texture segmentation using Gabor filters. Pattern Recognition, 24 (12): 1167–1186, 1991.CrossRefGoogle Scholar
  6. 6.
    J. Mao and A. Jain. Texture classification and segmentation using multiresolution simultaneous autoregressive models. Pattern Recognition, 25: 173–188, 1992.CrossRefGoogle Scholar
  7. 7.
    T. Ojala and M. Pietikainen. Unsupervised texture segmentation using feature distributions. Tech. Rep. CAR-TR-837, Center for Robotics and Automation, University Maryland, 1996.Google Scholar
  8. 8.
    F. Pereira, N. Tishby, and L. Lee. Distributional clustering of English words. In Proc. Association for Computational Linguistics, pages 181–190, 1993.Google Scholar
  9. 9.
    J. Puzicha and J. Buhmann. Multiscale annealing for real-time unsupervised texture segmentation. Technical Report IAI-97–4, Institut fur Informatik III (a short version appeared in: Proc. ICCV’98, pp. 267–273 ), 1997.Google Scholar
  10. 10.
    K. Rose, E. Gurewitz, and G. Fox. A deterministic annealing approach to clustering. Pattern Recognition Letters, 11: 589–594, 1990.zbMATHCrossRefGoogle Scholar
  11. 11.
    P. Schroeter and J. Bigun. Hierarchical image segmentation by multi-dimensional clustering and orientation-adaptive boundary refinement. Pattern Recognition, 28 (5): 695–709, 1995.CrossRefGoogle Scholar
  12. 12.
    J. Shi and J. Malik. Normalized cuts and image segmentation. In Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR’97), pages 731–737, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Jan Puzicha
    • 1
  • Thomas Hofmann
    • 2
  • Joachim M. Buhmann
    • 1
  1. 1.Institut für Informatik IIIUniversity of BonnGermany
  2. 2.Artificial Intelligence LaboratoryMassachusetts Institute of TechnologyUSA

Personalised recommendations