Advertisement

Nonlinear Biplots for Multivariate Normal Grouped Populations

  • M. Calvo
  • A. Villarroya
  • J. M. Oller
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

In this paper a new method for the simultaneous representation of populations and variables associated with multivariate normal model (without covariance matrix restrictions) in a low dimensional space is developed. The method is based on non-linear biplot methodology over the Siegel metric, which allows us to define a distance between populations. Finally, the variables are represented by the directions of maximum variation of their means.

Keywords

Nonlinear biplots Siegel distance Multivariate normal distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calvo, M. and Oiler, J.M. (1990). A distance between Multivariate Normal Distributions Based in Embedding into the Siegel Group. Journal of Multivariate Analysis, 35, 223–242.CrossRefGoogle Scholar
  2. Gower, J.C. (1968). Adding a point to a vector diagram in multivariate analysis. Biometrika, 55. 582–585.CrossRefGoogle Scholar
  3. Gower, J.C. and Hand, S. (1996). Biplots. London, Chapman Hall.Google Scholar
  4. Gower, J.C. and Harding, S. (1988). Non-linear Biplots. Biometrika, 73. 445–455.Google Scholar
  5. Krzanowski, W.J. (1996). Raos Distance Between Normal Populations that have Common Principal Components. Biometrics, 52. 1467–1471.CrossRefGoogle Scholar
  6. Ríos, M., Villarroya, A., Vegas, E. and Oiler, J.M. (1991). Representación Canónica Simultánea de Poblaciones y Variables: Una aplicación al estudio de enfermedades renales. Qüestiió, 15. 279–298Google Scholar
  7. Thomson, A. and Randall-Maciver, R. (1905). Ancient Races of the Thebaid. Oxford: Oxford University Press.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1998

Authors and Affiliations

  • M. Calvo
    • 1
  • A. Villarroya
    • 1
  • J. M. Oller
    • 1
  1. 1.Dept. EstadísticaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations