Advertisement

Some recent Developments in Factor Analysis and the Search for proper Communalities

  • Jos M. F. ten Berge
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

This paper describes recent results on factor analytic theory which involve the so-called Ledermann bound, and discusses theoretical properties of Minimum Rank Factor Analysis as an alternative to Iterative Principal Factor Analysis and exploratory Maximum Likelihood Factor Analysis. In terms of the residual eigenvalues, the three methods have closely related object functions, and will often give highly similar solutions in practice. Nevertheless, there are important differences between the methods. The most notable points are that Maximum Likelihood Factor Analysis is a method of fitting a statistical model, and that Minimum Rank Factor Analysis yields communalities in the classical sense, thus showing how much of the common variance is explained with any given number of factors.

Key words

Factor analysis proper solutions Ledermann bound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, A. A. (1944). The minimum rank of a correlation matrix. Proceedings of the National Academy of Sciences, 30, 144–146.CrossRefGoogle Scholar
  2. Anderson, T.W., Rubin, H. (1956). Statistical inference in factor analysis. In J. Neyman (Ed.): Proceedings of the third Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, 5, 111–150.Google Scholar
  3. Bekker, P. A., Leeuw, J. (1987). The rank of reduced dispersion matrices. Psychometrika, 52, 125–135.CrossRefGoogle Scholar
  4. Bekker, P. A., Ten Berge, J.M.F. (1997). Generic global identification in factor analysis. Linear Algebra and its Applications, 264, 255–264.CrossRefGoogle Scholar
  5. Bentler, P.M.,Ramshidian, M. (1994). Gramian matrices in covariance structure analysis. Applied Psychological Measurement, 18, 79–94.Google Scholar
  6. Bentler, P.M. (1995). EQS Structural Equation Program Manual. Multivariate Software, Encino (Cal.).Google Scholar
  7. Browne, M.W., Cudeck, R (1992). Alternative ways of assessing model fit. Sociological Methods Research, 21, 230–258.CrossRefGoogle Scholar
  8. Carroll, J.B. (1993). Human cognitive abilities: A survey of factor analytic research. New York: Cambridge University Press.CrossRefGoogle Scholar
  9. Cudeck, R., Henly, S.J. (1991). Model selection in covariance structure analysis and the problem of sample size: A clarification. Psychological Bulletin,, 109, 512–519.Google Scholar
  10. Guttman, L. (1958). To what extent can communalities reduce rank ? Psychometrika, 23, 297–308.CrossRefGoogle Scholar
  11. Harman, H.H. (1967). Modern factor analysis. Chicago: The University of Chicago Press.Google Scholar
  12. Harman, H.H., Jones, W.H. (1966). Factor analysis by minimizing residuals (minres). Psychometrika, 31, 351–368.CrossRefGoogle Scholar
  13. Hu, L., Bentler, P.M., Kano, Y. (1992). Can test statistics in covariance structure analysis be trusted ? Psychological Bulletin, 112, 351–362.CrossRefGoogle Scholar
  14. Ihara, M.,Kano, Y. (1986). A new estimator of the uniqueness in factor analysis. Psychometrika, 51, 563–566.Google Scholar
  15. Joreskog, K.G. (1967). Some contributions to maximum likelihood factor analysis. Psychometrika, 31, 443–482.CrossRefGoogle Scholar
  16. Joreskog, K.G. (1971). Statistical analysis of a set of congeneric tests. Psychometrika, 36, 109–133.CrossRefGoogle Scholar
  17. Joreskog, KG., Sorbom, D. (1996). LISREL 8: Users reference guide. Scientific Software Incorporation, Chicago.Google Scholar
  18. Kano, Y. (1990). Noniterative estimation and the choice of the number of factors in exploratory factor analysis. Psychometrika, 55, 277–291.CrossRefGoogle Scholar
  19. Ledermann, W. (1937). On the rank of reduced correlation matrices in multiple factor analysis. Psychometrika, 2, 85–93.CrossRefGoogle Scholar
  20. Lord, F.M. (1956). A study of speed factors in tests and academic grades. Psychometrika, 21, 31–50.CrossRefGoogle Scholar
  21. Mulaik, S.A. (1986). Factor analysis and Psychometrika: Major developments. Psychometrika, 51, 23–33.Google Scholar
  22. Shapiro, A. (1982). Rank reducibility of a symmetric matrix and sampling theory of minimum trace factor analysis. Psychometrika, 47, 187–199.CrossRefGoogle Scholar
  23. Shapiro, A. (1985). Identifiability of factor analysis: Some results and open problems. Linear Algebra and its Applications, 70, 1–7.Google Scholar
  24. Ten Berge, J.M.F., Kiers, H.A.L. (1991). A numerical approach to the exact and the approximate minimum rank of a covariance matrix. Psychometrika, 56, 309–315.CrossRefGoogle Scholar
  25. Thomson, G.H. (1934). Hotellings method modified to give Spearmans g. Journal of Educational Psychology, 25, 366–374.CrossRefGoogle Scholar
  26. Widaman, K.F. (1993). Common factor analysis versus component analysis: Differential bias in representing model parameters ? Multivariate Behavioral Research 28, 263–311.CrossRefGoogle Scholar
  27. Wilson, E. B.,Worcester, J. (1939). The resolution of six tests into three general factors. Proc. National Academy of Sciences, U.S.A., 25, 73–77.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1998

Authors and Affiliations

  • Jos M. F. ten Berge
    • 1
  1. 1.Heijmans InstituteUniversity of GroningenGroningenThe Netherlands

Personalised recommendations