Advertisement

Classification and Regression Trees Software and New Developments

  • Francesco Mola
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

The recent interest for tree based methodologies by more and more researchers and users have stimulated an interesting debate about the implemented software and the desired software. A characterisation of the available software suitable for so called classification and regression trees methodology will be described. Furthermore, the general properties that an ideal programme in this domain should have, will be defined. This allows to emphasise the peculiar methodological aspects that a general segmentation procedure should achieve.

Keywords

Classification and Regression Trees Segmentation Discrimination Splitting Pruning Amalgamation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AnswerTree (1997). SPSS-AnswerTree, SPSS Inc., Chicago, IL„ USA.Google Scholar
  2. Breiman, L., Friedman, J.H., Olshen, R.A: & Stone, C.J. (1984). Classification and Regression Trees, Wadsworth, Belmont, CA.Google Scholar
  3. Capiluppi C., Fabbris L. & Scarabello M. (1997). UNAIDED: a PC system for Binary and Ternary Segmentation analysis, Book of Short Papers of Classification and Data Analysis, Pescara.Google Scholar
  4. Cappelli, C., Mola, F. & Siciliano, R. (1998). An alternative pruning method based on impurity, In Proceedings of COMPSTAT’98, Bristol August (to appear)Google Scholar
  5. CART (1984). CART: A software for classification and regression trees, California Statistical Software Inc., Yorkshire Ct. Lafayette, CA, USA.Google Scholar
  6. CHAID (1996). SPSS-CHAID, SPSS Inc., Chicago, IL, USA.Google Scholar
  7. Ciampi, A. (1994). Classification and discrimination: The RECPAM approach, In COMPSTAT ‘94, Dutter R. & Grossmann W. eds., 139–147, Physica Verlag, Heidelberg.Google Scholar
  8. Clark, L. A. & Pregibon, D. (1992). Tree based models, In Statistical Models in S, Chambers J.M. & Hastie T.J. eds., Wadswoorth and Brooks/Cole.Google Scholar
  9. FIRM (1990). FIRM: Formal inference-based recursive modelling by D.M. Hawkins (for IBM PC), University of Minnesota, School of Statistics, Technical Report 546.Google Scholar
  10. Hörmann, A. et al. (1990). Comparing statistical analysis systems, Statistical Software Newsletter, 16, 90–127.Google Scholar
  11. Klaschka, J. & Mola, F. (1998). Minimization of computational cost in tree- based methods by a proper ordering of splits, In Proceedings of COMPSTA T ‘98, Bristol August (to appear).Google Scholar
  12. Klaschka, J., Siciliano, R. & Antoch, J. (1998). Computational enhancements in Tree-Growing Methods, in Proceedings of IFCS’98, Rome (to appear).Google Scholar
  13. Kass, G.V. (1980). An exploratory technique for investigating large quantities of categorical data, Applied Statistics, 29, 119–127.CrossRefGoogle Scholar
  14. Mola, F. & Siciliano, R. (1992). A two-stage predictive splitting algorithm in binary segmentation, In COMPSTAT’92, Y. Dodge & J. Whittaker eds., 179–184, Physica Verlag, Heidelberg.Google Scholar
  15. Mola, F. & Siciliano, R. (1994). Alternative strategies and CATANOVA testing in TWO-STAGE binary segmentation, New Approaches in Classification and Data Analysis, Diday E. et al. eds., 316–323, Springer Verlag.Google Scholar
  16. Mola, F. & Siciliano, R. (1997). A fast splitting procedure for classification trees, Statistics and Computing, 7, 209–216.CrossRefGoogle Scholar
  17. Mola, F. & Siciliano, R. (1997). Visualizing data in tree-structured classification, In Proceedings of the IFCS-96: Data Science, Classification and Related Methods, Hayashi C. et al eds., Springer Verlag, Tokyo.Google Scholar
  18. Mola, F., Klaschka, J. & Siciliano, R. (1996). Logistic classification trees, In COMPSTAT ‘96 Proceedings, Prat A. ed., Physica Verlag, Heidelberg.Google Scholar
  19. Morgan, J.N. & Sonquist, J.A. (1963). Problems in the analysis of survey data and a proposal, JASA, 58, 415–434.Google Scholar
  20. Quinlan, J. R. (1992). C4.5: Programs for machine learning, Morgan Kaufmann, New York.Google Scholar
  21. Safavian, S. R. & Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE Trans, on Systems, Man. and Cybernetics, 21, 660–674.CrossRefGoogle Scholar
  22. Siciliano, R. & Mola, F. (1997). Multivariate data analysis and modeling through classification and regression trees, Proceedings of the Second World Conference of IASC, Wegman E. ed., Pasadena CA (in press).Google Scholar
  23. Siciliano, R. & Mola, F. (1997). Ternary classification trees: a factorial approach, In Visualization of Categorical Data, Greenacre M. & Blasius J. Eds, Academic Press.Google Scholar
  24. SICLA (1991), Manuel de l’utilisateur, INRIA, Le Chesnay Cedex, France.Google Scholar
  25. S-PLUS (1997). S-PLUS Computing Environment v.4.0, StatSci, a division of MathSoft Inc., Seattle, WA, USA.Google Scholar
  26. SPAD.S (1996). Systeme Portable pour l’Analyse des Donnes-Segmentation, v.3.2. CISIA, Saint Mande.Google Scholar
  27. Steinberg, D., & Colla, P. (1995). CART. Salford System, San Diego, CA.Google Scholar
  28. Steinberg,, D. (1996). New developments in CART (Classification & Regression Tree) software, In Proceedings of the Fifth Conference of the IFCS, Kobe, Japan.Google Scholar
  29. Venables, W. N. & Ripley, B. D. (1994). Modern Applied Statistics with S-Plus, Springer-Verlag, Berlin.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1998

Authors and Affiliations

  • Francesco Mola
    • 1
  1. 1.Dip. Matematica e StatisticaUniversità di Napoli Federico IIItaly

Personalised recommendations