Advertisement

Two Group Linear Discrimination Based on Transvariation Measures

  • Angela Montanari
  • Daniela G. Calò
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

In this paper we derive a two group-linear discriminant function (LDF) by minimizing Gini’s transvariation probability. This solution is a special case of projection pursuit methods and improves the performances of Fisher’s LDF when the conditions which guarantee its optimality do not hold.

Key words

Linear discriminant function Transvariation Projection Pursuit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, T. W. & Bahadur, R. R. (1962). Classification into two multivariate normal populations with different covariance matrices, Annals of Mathematical Statistics, 33, 420–431.CrossRefGoogle Scholar
  2. Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems, Annals of Eugenics, 7, 179–188.CrossRefGoogle Scholar
  3. Gini, C. (1916). II concetto di transvariazione e le sue prime applicazioni, Giornale degli economisti and Rivista di statistica, and in Gini, C. (1959).Google Scholar
  4. Gini, C. (1959). Transvariazione, Libreria Goliardica, Roma (Ottaviani G. ed.).Google Scholar
  5. Huber, P. J. (1985). Projection Pursuit (with discussion), The Annals of Statistics, 13, 435–475.CrossRefGoogle Scholar
  6. Krzanowski, W. J. & Marriott, F. H. C. (1995). Multivariate Analysis, Part 2, Arnold, LondonGoogle Scholar
  7. Montanari, A. & Calò, D. G. (1998). Una rilettura, in termini di tranvariazione, dell’analisi discriminante lineare, XXXIX Riunione Scientifica della Società Italiana di Statistica, in press.Google Scholar
  8. Posse, C. (1992). Projection Pursuit Discriminant Analysis for two groups, Communications in Statistics, Theory and Methods, 21 (1), 1–19.CrossRefGoogle Scholar
  9. Salvemini, T. Transvariazione e analisi discriminatoria, in Gini, C. (1959).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1998

Authors and Affiliations

  • Angela Montanari
    • 1
  • Daniela G. Calò
    • 1
  1. 1.Dipartimento di Scienze StatisticheUniversità di BolognaBolognaItaly

Personalised recommendations