MCMC Inference for Model-based Cluster analysis

  • Halima Bensmail
  • Jacqueline J. Meulman
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


A new approach to cluster analysis has been introduced based on parsimonious geometric modelling of the within-group covariance matrices in a mixture of multivariate normal distributions, using Bayesian calculation and the Gibbs sampler. The approach answers many limitations of the Maximum likelihood approach. Here we propose to investigate more general models dealing with the shape and orientation of the clusters using the Gibbs Sampler.


Bayes Factor Gaussian Mixture Gibbs Sampler 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, T. W. ( 1984, 1958). An Introduction to Multivariate Statistical Analysis. Wiley, New York.Google Scholar
  2. Banfield, J. D., & Raftery, A. E. (1993). Model-based Gaussian and non Gaussian Clustering, Biometrics, 49, 803–821.CrossRefGoogle Scholar
  3. Bensmail, H., Celeux, G., Raftery, A. E. & Robert, C. (1997). Inference in Model-Based Cluster Analysis, Statistics and Computing, 7, 1–10.CrossRefGoogle Scholar
  4. Dasgupta, A. & Raftery, A. E. (1995). Detecting features in spacial point processes with clutter via Model-based clustering, Technical Report No 295, Department of Statistics, University of Washington.Google Scholar
  5. Lavine, M. & West, M. (1992). A Bayesian method for classification and discrimination, The Canadian Journal of Statistics, 20, 451–461.CrossRefGoogle Scholar
  6. Lewis, S. M. & Raftery, A. E. (1997). Estimating Bayes factors via posterior simulation with the Laplace-Metropolis estimator, Journal of the American Statistical Association, to appear. McLachlan, G. & Basford, K. (1988). Mixture Models: Inference and Applications to Clustering. Marcel Dekker, New York.Google Scholar
  7. Reaven, G. M. & Miller, R. G. (1979). An attempt to define the nature of chemical diabetes using a multidimensional analysis, Diabetologia, 16, 17–24.CrossRefGoogle Scholar
  8. Symons, M. (1981). Clustering criteria and multivariate normal mixtures, Biometrics, 37, 35–43.CrossRefGoogle Scholar
  9. Tanner, M. & Wong, W. (1987). The calculation of posterior distributions by data augmentation (with discussion), Journal of the American Statistical Association, 82, 528–550.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1998

Authors and Affiliations

  • Halima Bensmail
    • 1
  • Jacqueline J. Meulman
    • 1
  1. 1.Department of Education, Data Theory GroupLeiden UniversityLeidenThe Netherlands

Personalised recommendations