Global stochastic optimization techniques applied to partitioning

  • Javier Trejos
  • Alex Murillo
  • Eduardo Piza
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


We have applied three global stochastic optimization techniques to the problem of partitioning: simulated annealing, genetic algorithms and tabu search. The criterion to be minimized is the within-variance. Results obtained are compared with those of classical algorithms and are shown to be better in nearly all cases.


genetic algorithms simulated annealing tabu search within-variance numerical variables 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aarts, E.; Korst, J. (1990) Simulated Annealing and Boltzmann Machines. A Stochastic Approach to Combinatorial Optimization and Neural Computing. John Wiley & Sons, Chichester.Google Scholar
  2. Courrieu, P. (1993) Distributed search algorithm for global optimization on numerical spaces, Recherche Opérationnelle RAIRO, 27 (3), 281–292.Google Scholar
  3. Diday, E. and coll. (1980) Optimisation en Classification Automatique, 2 vols. INRIA, Rocquencourt.Google Scholar
  4. Klein, R. W.; Dubes, R.C. (1989) Experiments in projection and clustering by simulated annealing, Pattern Recognition, 22, 213–220.CrossRefGoogle Scholar
  5. Forgy, E. W. (1965) Cluster analysis of multivariate data: efficiency versus interpretability of classification, Biometrics, 21, 768–769.Google Scholar
  6. Glover, F. et al. (1993) Tabu search: an introduction, Annals of Opererations Research, 41 (1-4), 1–28.CrossRefGoogle Scholar
  7. Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading-Mass.Google Scholar
  8. MacQueen, J. (1967) Some methods for classification and analysis of multivariate observations, Proceedings 5th Berkeley Symposium, 1, 281–297.Google Scholar
  9. Murillo, A.; Trejos, J. (1996) Classification tabou basée en transferts, in IV Journ. Soc. Franc. Classify S. Joly k G. Le Calvé (eds.), Vannes, 26.1–26. 4Google Scholar
  10. Murillo, A.; Piza, E.; Trejos, J. (1997) A tabu search algorithm for partitioning, Preprint, CIMPA, Universidad Costa Rica.Google Scholar
  11. Piza, E.; Trejos, J. (1996) Partitionnement par recuit simulé, in IV Journ. Soc. Franc. Classify S. Joly & G. Le Calvé (eds.), Vannes, 27. 1–27. 4Google Scholar
  12. Piza, E.; Trejos, J.; Murillo, A. (1997) A genetic algorithm for clustering, Preprint, CIMPA, Universidad de Costa Rica.Google Scholar
  13. Rudolph, G. (1994) Convergence of a genetic algorithm, IEEE Transactions on Neural Networks, 5 (1), 96–101.CrossRefGoogle Scholar
  14. Trejos, J. (1996) Un algorithme génétique de partitionnement, in IV Journ. Soc. Franc. Classify S. Joly & G. Le Calvé (eds.), Vannes, 31.1–31. 4Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1998

Authors and Affiliations

  • Javier Trejos
    • 1
  • Alex Murillo
    • 1
  • Eduardo Piza
    • 1
  1. 1.PIMAD-CIMPA, School of MathematicsUniversity of Costa RicaSan JoséCosta Rica

Personalised recommendations