Advertisement

A constrained clusterwise procedure for segmentation

  • Tommaso Gastaldi
  • Donatella Vicari
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

A procedure for segmentation by a constrained hierarchical clustering algorithm is proposed, using a criterion (or response) variable X and k structural factors or predictors, which yields classes different mainly as to the (conditional) distributions of X, computed within each segment. Since the procedure works on combinations of factor levels (and only indirectly on individuals), the methodology can be employed even for very large populations, with no increase of computational complexity.

Key words

Segmentation structural factors adjacency constrained classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aluja, T., Nafria, E. (1996). Robust impurity measures in decision trees, Proceedings of IFCS-96: Data Science, Classification and Related Methods, (Hayashi, C. et al., eds.), Springer Verlag, Tokio.Google Scholar
  2. Breiman, L., Friedman, J.H., Olshen R.A., Stone C.J. (1984). Classification and Regression Trees, Wadsworth International Group, Belmont, California.Google Scholar
  3. Celeux, G., Lechevallier, Y. (1982). Méthodes de Segmentation non Paramétriques, Revue de Statistique Appliquée, 4, 39–53.Google Scholar
  4. Gordon, A. (1996). A survey of constrained classification, Computational Statistics & Data Analysis, 21, 17–29.CrossRefGoogle Scholar
  5. Milligan, G.W., Cooper, M.C. (1985). An examination of procedures for determining the number of clusters in a data set, Psychometrika, 50, 159–179.CrossRefGoogle Scholar
  6. Morgan, J.N., Sonquist, J.A. (1963). Problems in the analysis of survey data and a proposal, Journal of American Statistical Association, 58, 415–434.CrossRefGoogle Scholar
  7. Quinlan, J.R. (1986). Induction of Decision Trees, Machine Learning, 1, 81–106.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1998

Authors and Affiliations

  • Tommaso Gastaldi
    • 1
  • Donatella Vicari
    • 1
  1. 1.Dipartimento di Statistica, Probabilità e Statistiche ApplicateUniversità degli Studi di Roma “La Sapienza”RomaItalia

Personalised recommendations