Advertisement

Consensus of classifications: the case of trees

  • Bruno Leclerc
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Summary

We present a survey of the literature on the consensus of classification trees, based on a corpus (in progress) of about ninety papers.

Key words

classification tree hierarchy dendrogram ultrametric consensus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.N. Adams III (1972), Consensus Techniques and the Comparison of Taxonomic Trees, Syst. Zool. 21, 390–397.CrossRefGoogle Scholar
  2. E.N. Adams III (1986), TV-Trees as Nestings: Complexity, Similarity and Consensus, J. of Classification 3 (2), 299–317.Google Scholar
  3. A. Anderberg, A. Tehler (1990), Consensus trees, a necessity in taxonomic practice, Cladistics 6, 399–402.CrossRefGoogle Scholar
  4. P. Arabie, L.J. Hubert (1996), An overview of combinatorial data analysis, in: P. Arabie, L.J. Hubert, G. De Soete, eds., Clustering and Classification, World Scientific Publ., River Edge, NJ, pp. 5–63.Google Scholar
  5. K.J. Arrow (1951), Social Choice and Individual Values, New-York, Wiley.Google Scholar
  6. H.J. Bandelt, J. Hedlikova (1983), Median algebras, Discrete Math. 45, 1–30.CrossRefGoogle Scholar
  7. H.J. Bandelt, J.P. Barthélémy (1984), Medians in Median Graphs, Discrete Applied Math. 8, 131–142.CrossRefGoogle Scholar
  8. M. Barrett, M.J. Donoghue, E. Sober (1991), Against consensus, Syst. Zool. 40, 486–493.CrossRefGoogle Scholar
  9. M. Barrett, M.J. Donoghue, E. Sober (1991), Crusade? A response to Nelson, Syst. Zool. 42, 216–217.Google Scholar
  10. J.P. Barthélémy (1988), Thresholded consensus for n-trees, J. of Classification 5 (2), 229–236.CrossRefGoogle Scholar
  11. J.P. Barthélémy, M.F. Janowitz (1991), A formal theory of consensus, SIAM J. Discr. Math. 4, 305–322.CrossRefGoogle Scholar
  12. J.P. Barthélémy, B. Leclerc (1995), The median procedure for partitions, in I.J. Cox, P. Hansen, and B. Julesz, eds., Partitioning data sets, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 19, Amer. Math. Soc., Providence, RI, pp. 3–34.Google Scholar
  13. J.P. Barthélémy, B. Leclerc, B. Monjardet (1984), Ensembles ordonnés et taxonomie mathématique, in Orders: Descriptions and Roles, eds M. Pouzet and D. Richard, Annals of Discrete Mathematics 23, Amsterdam, North-Holland, 523–548.Google Scholar
  14. J.P. Barthélémy, B. Leclerc, B. Monjardet (1986), On the use of ordered sets in problems of comparison and consensus of classifications, J. of Classification 3, 187–224.CrossRefGoogle Scholar
  15. J.P. Barthélémy, F.R. McMorris (1986), The Median Procedure for n-trees, J. of Classification 3 (2), 329–334.CrossRefGoogle Scholar
  16. J.P. Barthélémy, F.R. McMorris (1989), On an indépendance condition for consensus n-trees, Appl. Math. Lett. 2 (1), 75–78.CrossRefGoogle Scholar
  17. J.P. Barthélémy, F.R. McMorris, R.C. Powers (1991), Indépendance conditions for consensus n-trees revisited, Appl. Math. Lett. 4 (5), 43–46.CrossRefGoogle Scholar
  18. J.P. Barthélémy, F.R. McMorris, R.C. Powers (1992), Dictatorial consensus functions on n-trees, Math. Soc. Sci. 25, 59–64.CrossRefGoogle Scholar
  19. J.P. Barthélémy, F.R. McMorris, R.C. Powers (1995), Stability conditions for consensus functions defined on n-trees, Mathl Comput. Modelling 22 (1), 79–87.Google Scholar
  20. J.P. Barthélémy, B. Monjardet (1981), The median procedure in cluster analysis and social choice theory, Math. Soc. Sci. 1 (3), 235–238.CrossRefGoogle Scholar
  21. J.P. Barthélémy, B. Monjardet (1988), The median procedure in data analysis: new results and open problems, in Classification and related methods in data analysis ( H.H.Bock, ed.), North-Holland, Amsterdam, 309–316.Google Scholar
  22. B.R. Baum (1992), Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees, Taxon 41, 3–10.CrossRefGoogle Scholar
  23. R. Baum, M.A. Ragan (1993), Reply to A.R. Rodrigo’s A comment on Baum’s method for combining phylogenetic trees, Taxon 42, 637–640.CrossRefGoogle Scholar
  24. J.P. Benzécri (1967), Description mathématique des classifications, in L’analyse des données 1. La taxinomie, Paris, Dunod 1973.Google Scholar
  25. K. Bremer (1990), Combinable component consensus, Cladistics 6, 369–372.CrossRefGoogle Scholar
  26. P. Buneman (1971), The Recovery of Trees from Measures of Dissimilarity, in Mathematics in Archaeological and Historical Sciences, eds. F.R. Hodson, D.G. Kendall and P. Tautu, Edinburgh, Edinburgh University Press, 387–395.Google Scholar
  27. V. Chepoi, B. Fichet (1997), Approximations via subdominants, Math. Social Sci., to appear.Google Scholar
  28. H. Colonius, H.H. Schulze (1981), Tree structure for proximity data, British J. Math. Statist Psychol. 34, 167–180.CrossRefGoogle Scholar
  29. M. Constantinescu, D. Sankoff (1995), An efficient algorithm for supertrees, J. of Classification 12, 101–112.CrossRefGoogle Scholar
  30. G. Cucumel, F.J. Lapointe (1997), Un test de la pertinence du consensus par une méthode de permutations, Actes des XXIXèmes journées de statistique de Carcassonne, 299–300.Google Scholar
  31. W.H.E. Day (1983), The role of complexity in comparing classifications, Math. Biosciences 66, 97–114.CrossRefGoogle Scholar
  32. W.H.E. Day (1985), Optimal Algorithms for Comparing Trees with Labelled Leaves, J. of Classification 2, 7–28CrossRefGoogle Scholar
  33. W.H.E. Day (1986), Foreword: Comparison and Consensus of Classifications, J. of Classification 3, n°2, 183–185.Google Scholar
  34. W.H.E. Day, F.R. McMorris (1985), A Formalization of Consensus Index Methods, Bull, of Math. Biol. 47, 215–229.Google Scholar
  35. W.H.E. Day, R.S. Wells (1984) Extremes in the complexity of computing metric distances between partitions, IEEE Trans. Pattern Anal, and Mach. Intel. PAMI-6, 69–73.Google Scholar
  36. A. de Queiroz (1993), For consensus (sometimes), Syst. Biol. 42, 368–372.Google Scholar
  37. A. de Queiroz, M.J. Donoghue, J. Kim (1995), Separate versus combined analysis of phylogenetic evidence, Annual Review of Ecology and Systematics 26, 657–681.Google Scholar
  38. J.S. Farris, A.G. Kluge, M.J. Eckart (1970), A numerical approach to phylogenetic systematics, Syst. Zoo I., 19, 172–189.CrossRefGoogle Scholar
  39. J.S. R. Finden, A.D. Gordon (1985), Obtaining Common Pruned Trees, J. of Classification 2, 255–276.CrossRefGoogle Scholar
  40. M. Fréchet (1949), Réhabilitation de la notion statistique de l’homme moyen, Les Conférences du Palais de la Découverte, Paris.Google Scholar
  41. W. Goddard, E. Kubicka, G. Kubicki, F.R. McMorris (1995), Agreement subtrees, metrics and consensus for labeled binary trees, in Partitioning Data Sets, I. Cox, P. Hansen, B. Julesz, eds., DIMACS Series, vol. 19, AMS, Providence, R.I., 1995, pp. 97–104.Google Scholar
  42. A.D. Gordon (1979), A measure of the agreement between rankings, Biometrika 66, 7–15.CrossRefGoogle Scholar
  43. A.D. Gordon (1980), On the assessment and comparison of classifications, in: R. Tomassone, ed., Analyse de données et informatique, Le Chesnay, INRIA, pp. 149–160.Google Scholar
  44. A.D. Gordon (1981), Classification: methods for the exploratory analysis of multivariate data, Chapman and Hall, London.Google Scholar
  45. A.D. Gordon (1986), Consensus Supertrees: the synthesis of rooted trees containing overlapping sets of labeled leaves, J. of Classification 3, n°2, 335–348.Google Scholar
  46. A.D. Gordon (1987), A review of Hierarchical Classification, J. of the Royal Statist. Soc. (series A) 150, 119–137.Google Scholar
  47. D. Gordon (1996), Hierarchical Classification, in: P. Arabie, L.J. Hubert, G. De Soete, eds., Clustering and Classification, World Scientific Publ., River Edge, NJ, pp. 65–121.Google Scholar
  48. M. Hendy, M.A. Steel, D. Penny, I.M. Henderson (1988), Families of Trees and Consensus, in H.H.Bock, ed., Classification and related methods in data analysis, North-Holland, Amsterdam, pp. 355–362.Google Scholar
  49. M.F. Janowitz (1978), An order theoretic model for cluster analysis, SIAMJ. Appl. Math. 37, 55–72.CrossRefGoogle Scholar
  50. S. C. Johnson (1967), Hierarchical clustering schemes, Psychometrika 32, 241–254.CrossRefGoogle Scholar
  51. E. Kubicka, G. Kubicki, F.R. McMorris (1992), On agreement subtrees of two binary trees, Congress us Numerantium 88, 217–224.Google Scholar
  52. E. Kubicka, G. Kubicki, F.R. McMorris (1995), An algorithm to find agreement subtrees, J. of Classification 12, 91–99.CrossRefGoogle Scholar
  53. S. Lanyon (1993), Phylogenetic frameworks: towards a firmer foundation for the comparative approach, Biological J. of the Linnean Society 49, 45–61.CrossRefGoogle Scholar
  54. E. J. Lapointe (1997), How to validate phylogenetic trees? A stepwise procedure, preprint.Google Scholar
  55. F.J. Lapointe, G. Cucumel (1997), The average consensus procedure: combination of weighted trees containing identical or overlapping sets of objects, Syst. Biol. 46, 306–312.CrossRefGoogle Scholar
  56. F.J. Lapointe, P. Legendre (1990), A statistical framework to test the consensus of two nested classifications, Syst. Zool. 39, 1–13.CrossRefGoogle Scholar
  57. F.J. Lapointe, P. Legendre (1992a), A statistical framework to test the consensus among additive trees (cladograms), Syst. Biol. 41, 158–171.Google Scholar
  58. F.J. Lapointe, P. Legendre (1992b), Statistical significance of the matrix correlation coefficient for comparing independent phylogenetic trees, Syst. Biol. 41, 378–384.Google Scholar
  59. F.J. Lapointe, P. Legendre (1995), Comparison tests for dendrograms: a comparative evaluation, J. of Classification 12, 265–282.CrossRefGoogle Scholar
  60. B. Leclerc (1984), Efficient and binary consensus functions on transitively valued relations, Math. Social Sci. 8, 45–61.CrossRefGoogle Scholar
  61. B. Leclerc (1991), Agregation of fuzzy preferences: a theoretic Arrow-like approach, Fuzzy Sets and Systems 43 (3), (291–309).Google Scholar
  62. B. Leclerc (1993), Lattice valuations, medians and majorities, Discrete Math. III, 345–356.Google Scholar
  63. B. Leclerc, G. Cucumel (1987), Consensus en classification: une revue bibliographique, Math. Sci. hum. 100, pp. 109–128.Google Scholar
  64. B. Leclerc, B. Monjardet (1995), Latticial theory of consensus, in Social choice, Welfare and Ethics, V. Barnett, H. Moulin, M. Salles & N. Schofield, eds, Cambridge University Press, 145–159.Google Scholar
  65. L.P. Lefkovitch (1985), Euclidean consensus dendrograms and other classification structures, Math. Biosciences 74, 1–15.CrossRefGoogle Scholar
  66. T. Margush, F.R. McMorris (1981), Consensus n-trees, Bull. Math. Biology 43, 239–244.Google Scholar
  67. F.R. McMorris (1985), Axioms for consensus functions on undirected phylogenetic trees, Math. Biosciences. A, 17–21.Google Scholar
  68. F.R. McMorris (1990), The median procedure for /i-Trees as a Maximum Likelihood Method, J. of Classification 7, 77–80.CrossRefGoogle Scholar
  69. F.R. McMorris, D.B. Meronk, D.A. Neumann (1983), A view of some consensus methods for trees, in J. Felsenstein, ed., Numerical Taxonomy, Berlin, Springer-Verlag, pp. 122–126.CrossRefGoogle Scholar
  70. F.R. McMorris, H.M. Mulder, F.S. Roberts (1996), The median function on median graphs and median semilattices, Discrete Applied Math., to appear.Google Scholar
  71. F.R. McMorris, D.A. Neumann (1983), Consensus functions defined on trees, Math. Soc. Sci. 4, 131–136.CrossRefGoogle Scholar
  72. F.R. McMorris, R.C. Powers (1993), Consensus functions on trees that satisfy an independance axiom, Discrete Applied Math. 47, 47–55.CrossRefGoogle Scholar
  73. F.R. McMorris, R.C. Powers (1996), Intersection rules for consensus hierarchies and pyramids, in Ordinal and Symbolic Data Analysis ( E. Diday et al., eds.), Berlin, Springer-Verlag, pp. 301–308.CrossRefGoogle Scholar
  74. F.R. McMorris, R.C. Powers (1995), The median procedure in a formal theory of consensus, SIAM J. Disc. Math. 14, 507–516.CrossRefGoogle Scholar
  75. F.R. McMorris, R.C. Powers (1997), The median function on weak hierarchies, in Mathematical hierarchies and Biology (B. Mirkin, F.R. McMorris, F. Roberts, A. Rzhetsky, eds.), DIMACS Series, vol. 37, AMS, Providence, RI, 1997, pp. 265–269.Google Scholar
  76. 1.3.
    R. McMorris, M.A. Steel (1994), The complexity of the median procedure for binary trees, in New Approaches in Classification and Data Analysis ( E. Diday et al., eds), Studies in Classification, Data Analysis and Knowledge Organization, Berlin, Springer-Verlag (1994), 136–140.Google Scholar
  77. B. Monjardet (1980), Théorie et application de la médiane dans les treillis distributifs finis, Annals of Discrete Math. 9, 87–91.CrossRefGoogle Scholar
  78. B. Monjardet (1990), Arrowian characterizations of latticial federation consensus functions, Math. Soc. Sci. 20, 51–71.CrossRefGoogle Scholar
  79. G. Nelson (1979), Cladistic Analysis and Synthesis: principles and definitions, with a historical note on Adanson’s Familles des plantes (1763-1764), Syst. Zool. 28, 1–21.CrossRefGoogle Scholar
  80. G. Nelson (1993), Why crusade against consensus? A reply to Barrett, Donoghue and Sober, Syst. Biol. 42, 215–216.Google Scholar
  81. D.A. Neumann (1983), Faithful Consensus Methods for n-Trees, Math. Biosci. 63, 271–287.CrossRefGoogle Scholar
  82. D.A. Neumann, V.T. Norton Jr. (1986), On lattice consensus methods, J. of Classification 3, 225–255.CrossRefGoogle Scholar
  83. R.D.M. Page (1989), Comments on component-compatibility in historical biogeography, Cladistics 5, 167–182.CrossRefGoogle Scholar
  84. R.D.M. Page, M.A. Charleston (1997), Reconciled trees and incongruent gene and species trees, in Mathematical hierarchies and Biology (B. Mirkin, F.R. McMorris, F. Roberts, A. Rzhetsky, eds.), DIMACS Series, vol. 37, AMS, Providence, RI, 1997, pp. 57–70.Google Scholar
  85. C. Philips, T.J. Warnow (1996), The asymmetric median tree - A new model for building consensus trees, Discrete Applied Math. 71, 311–335.CrossRefGoogle Scholar
  86. R.C. Powers (1995), Intersection rules for consensus n-trees, Appl. Math. Lett. 8, 51–55.CrossRefGoogle Scholar
  87. A. Purvis (1995a), A modification to Baum and Ragan’s method for combining phylogenetic trees, Syst. Biol. 44, 251–255.Google Scholar
  88. A. Purvis (1995b), A composite estimate of primate phylogeny, Phil. Trans, of the Royal Soc. of London (B) 348, 405–421.Google Scholar
  89. M.A. Ragan (1992), Phylogenetic inference based on matrix representation of trees, Molecular Phylogenetics and Evolution 1, 53–58.CrossRefGoogle Scholar
  90. A.G. Rodrigo (1993), A comments on Baum’s method for combining phylogenetic trees, Taxon 42, 631–636.CrossRefGoogle Scholar
  91. F.J. Rohlf (1982), Consensus indices for comparing classifications, Math. Biosci. 59, 131–144.CrossRefGoogle Scholar
  92. F. Ronquist (1996), Matrix representation of trees, redundancy and weighting, Syst. Biol. 45, 247–253.CrossRefGoogle Scholar
  93. M.J. Sanderson (1989), Confidence limits on phylogenies: the bootstrap revisited, Cladistics 5, 113–129.CrossRefGoogle Scholar
  94. M. Schader (1981), Scharfe und unscharfe ¡classification qualitative daten, Athenäum, Königstein.Google Scholar
  95. K. Shao, F.J. Rohlf (1983), Sampling distribution of consensus indices when all bifurcation trees are equally likely, in J. Felsenstein, ed., Numerical Taxonomy, Berlin, Springer-Verlag, pp. 132–136.CrossRefGoogle Scholar
  96. K. Shao, R.R. Sokal (1986), Significance tests of consensus indices, Syst. Zool. 35, 582–590.CrossRefGoogle Scholar
  97. R.R. Sokal, F.J. Rohlf (1981), Taxonomic Congruence in the Leptopodomorpha Reexamined, Syst. Zool. 30, 309–325.CrossRefGoogle Scholar
  98. M.A. Steel (1988), Distribution of the symmetric difference metric on phylogenetic trees, SIAM J. Discrete Math. 9, 91–116.Google Scholar
  99. M.A. Steel (1992), The complexity of reconstructing trees from qualitative characters and subtrees, J. of Classification 9, 91–116.CrossRefGoogle Scholar
  100. R. Stinebrickner (1984a), s-Consensus Trees and Indices, Bull, of Math. Biology 46, 923–935.Google Scholar
  101. R. Stinebrickner (1984b), An extension of intersection methods from trees to dendrograms, Syst. Zool. 33 (4), 381–386.CrossRefGoogle Scholar
  102. R. Stinebrickner (1986) s-Consensus Index Method: an additional axiom, J. of Classification 3, n°2, 319–327.Google Scholar
  103. W. Vach (1994), Preserving consensus hierarchies, J. of Classification 11, 59–77.CrossRefGoogle Scholar
  104. W. Vach, P.O. Degens (1988), The system of common lower neighbors of a hierarchy, in H.H. Bock, ed., Classification and related methods of data analysis, Amsterdam, North Holland, pp. 165–172.Google Scholar
  105. M. Wilkinson (1994), Common cladistic information and its consensus representation: reduced Adams and reduced cladistic consensus trees and profiles, Syst. Biol. 43, 343–368.Google Scholar
  106. M. Wilkinson (1996), Majority-rule reduced consensus trees and their use in bootstrapping, Molecular Biology and Evolution 13, 437–444.Google Scholar
  107. H. P. Young (1988), Condorcet Theory of Voting, Amer. Political Science Rev. 82, 1231–1244.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1998

Authors and Affiliations

  • Bruno Leclerc
    • 1
  1. 1.Centre d’Analyse et de Mathématique SocialesÉcole des Hautes Études en Sciences SocialesParis cedex 06France

Personalised recommendations