For Consensus (With Branch Lengths)

  • François-Joseph Lapointe
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)


A debate over the use of consensus methods for combining trees, as opposed to combination of data sets, is currently growing in the field of phylogenetics. Resolution of this question is greatly influenced by the consensus method employed (i.e., for unweighted or weighted trees). In the present paper, my main objective is to review some of these methods that allow for the combination of weighted trees. These consensus with branch lengths will be compared to some of the commonly used consensus methods for n-trees. Finally, I will extend the results to supertrees.

Key words

Consensus Trees Weighted Trees Phylogenies Supertrees 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, E. N. III. (1972). Consensus techniques and the comparison of taxonomic trees, Systematic Zoology, 21, 390–397.CrossRefGoogle Scholar
  2. Barrett, M., Donoghue, M. J. & Sober, E. (1991). Against consensus, Systematic Zoology, 40, 486–493.CrossRefGoogle Scholar
  3. Brossier, G. (1990). Piecewise hierarchical clustering, Journal of Classification, 7, 197–216.CrossRefGoogle Scholar
  4. Cucumel, G. (1990). Construction d’une hiérarchie consensus à l’aide d’une ultramétrique centrale, in: Recueil des Textes des Présentations du Colloque sur les Méthodes et Domaines d’Application de la Statistique 1990, Bureau de la Statistique du Québec, Québec, 235–243.Google Scholar
  5. de Queiroz, A. (1993). For consensus (sometimes), Systematic Biology, 42, 368–372.Google Scholar
  6. de Queiroz, A., Donoghue, M. J. & Kim, J. (1995). Separate versus combined analysis of phylogenetic evidence, Annual Review of Ecology and Systematics, 26, 657–681.CrossRefGoogle Scholar
  7. Gordon, A. D. (1986). Consensus supertrees: The synthesis of rooted trees containing overlapping sets of labeled leaves, Journal of Classification, 3, 335–348.CrossRefGoogle Scholar
  8. Hendy, M. D. (1991). A combinatorial description of the closest tree algorithm for finding evolutionary trees, Discrete Mathematics, 96, 51–58.CrossRefGoogle Scholar
  9. Hendy, M. D. & Penny, D. (1993). Spectral analysis of phylogenetic data, Journal of Classification, 10, 5–24.CrossRefGoogle Scholar
  10. Huelsenbeck, J. P., Bull, J. J. & Cunningham, W. (1996). Combining data in phylogenetic analysis, Trends in Ecology and Evolution, 11, 152–158.CrossRefGoogle Scholar
  11. Kirsch, J. A. W., Springer, M. S. & Lapointe, F.-J. Out of Africa: a distance-based approach to character and taxonomic congruence in placental phylogeny, submitted.Google Scholar
  12. Kluge, A. G. (1989). A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes), Systematic Biology, 38, 7–25.Google Scholar
  13. Lapointe, F.-J. (1997). How to validate phylogenetic trees? A stepwise procedure, in: Data Science, Classification, and Related Methods: Studies in Classification, Data Analysis, and Knowledge Optimization, Hayashi, C., Bock, H. H., Yajima, K., Tanaka, Y., Oshumi, N. & Baba, Y. (Eds), Springer, Tokyo, in press.Google Scholar
  14. Lapointe, F.-J. & Cucumel, G. (1997). The average consensus procedure: Combination of weighted trees containing identical or overlapping sets of taxa, Systematic Biology, 46, 306–312.CrossRefGoogle Scholar
  15. Lapointe, F.-J., Kirsch, J. A. W. & Bleiweiss, R. (1994). Jackknifing of weighted trees: Validation of phylogenies reconstructed from distances matrices, Molecular Phylogenetics and Evolution, 3, 256–267.CrossRefGoogle Scholar
  16. Lapointe, F.-J., Kirsch, J. A. W. & Hutcheon, J. M. Total evidence, consensus, and bat phylogeny: a distance-based approach, submitted.Google Scholar
  17. Landry, P.-A. & Lapointe, F.-J. (1997). Estimation of missing distances in path- length matrices: problems and solutions, in Mathematical Hierarchies and Biology, Mirkin, B., McMorris, F. R., Roberts, F. S. & Rzhetsky, A. (Eds), DEVLACS Series in Discrete Mathematics and Theoretical Computer Science, American Mathematical Society, Providence, 209–218.Google Scholar
  18. Lefkovitch, L. P. (1976). Hierarchical clustering from principal coordinates: An efficient method from small to very large number of objects, Mathematical Biosciences, 31, 157–176.CrossRefGoogle Scholar
  19. Lefkovitch, L. P. (1978). Consensus coordinates from qualitative and quantitative attributes, Biomedical Journal, 20, 679–691.Google Scholar
  20. Lefkovitch, L. P. (1985). Euclidean consensus dendrograms and other classification structures, Mathematical Bioscience, 74, 1–15.CrossRefGoogle Scholar
  21. Margush, T. & McMorris, F. R. (1981). Consensus n-trees. Bulletin of Mathematical Biology, 43, 239–244.Google Scholar
  22. Miyamoto, M. M. & Fitch, W M. (1995). Testing species phylogenies and phylogenetic methods with congruence, Systematic Biology, 44, 64–76.Google Scholar
  23. Neumann, D. A. (1983). Faithful consensus methods for n-trees, Mathematical Bioscience, 63, 271–287.CrossRefGoogle Scholar
  24. Sokal, R. R. & Rohlf, F. J. (1981). Taxonomic congruence in the Leptopodomorpha re-examined, Systematic Zoology, 30, 309–325.CrossRefGoogle Scholar
  25. Stinebrickner, R. (1984a). S-consensus trees and indices, Bulletin of Mathematical Biology, 46, 923–935.Google Scholar
  26. Stinebrickner, R. (1984b). An extension of intersection methods from trees to dendrogram, Systematic Zoology, 33, 381–386.CrossRefGoogle Scholar
  27. Vichi, M. (1993). Un algoritmo dei minimi quadrati per interpolare un insieme di classificazioni gerarchiche con une classificazione consenso, Metron, 51, 139–163.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1998

Authors and Affiliations

  • François-Joseph Lapointe
    • 1
  1. 1.Département de sciences biologiquesUniversité de MontréalMontréalCanada

Personalised recommendations