Modified Kernels in Spectral Geoid Determination: First Results from Western Australia

  • W. E. Featherstone
  • M. G. Sideris
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 119)

Abstract

The deterministic kernel modifications proposed by Wong and Gore (1969), Meissl (1971), and Vanicek and Kleusberg (1987) have been used in the one-dimensional fast Fourier transform (1D-FFT) implementation of Stokes’s integral. Geoid results over Western Australia are compared with Global Positioning System and Australian Height Datum data to illustrate improvements made upon the spherical Stokes kernel.

Keywords

Convolution Cose Gridding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Featherstone WE, Kearsley AHW, Gilliland JR (1997) Data preparations for a new Australian gravimetric geoid, Aust Surv, 42(1): 33–44.Google Scholar
  2. Featherstone WE, Stewart MP (1998) Possible evidence for systematic distortions in the Australian Height Datum in Western Australia, Geom Res Aust, (in press).Google Scholar
  3. Forsberg R, Sideris MG (1993) Geoid computations by the multi-band spherical FFT approach, Bull Geod, 18: 82–90.Google Scholar
  4. Forsberg R, Featherstone WE (1998) Geoids and cap sizes. Proc IAG Conf, Rio (this volume).Google Scholar
  5. Haagmans RR, de Min E, van Gelderen M (1993) Fast evaluation of convolution integrals on the sphere using 1D-FFT, and a comparison with existing methods for Stokes’s integral. manuscr geod, 18(5): 227–241.Google Scholar
  6. Jekeli C (1981) Modifying Stokes’s function to reduce the error of geoid undulation computations, J Geophys Res, 86(B8): 6985–6990.CrossRefGoogle Scholar
  7. Kirby JF, Featherstone, WE (1997) A study of zero- and first-degree terms in geopotential models over Australia, Geom Res Aust, 66: 93–108.Google Scholar
  8. Lemoine FG, Smith DE, Smith R, Kunz L, Pavlis NK, Klosko SM, Chinn DS, Torrence MH, Williamson RG, Cox CM, Rachlin KE, Wang WM, Pavlis EC, Kenyon SC, Salman R, Trimmer R, Rapp RH, Nerem RS (1997) The development of the NASA, GSFC and DMA joint geopotential model, Proc IAG Conf, Tokyo.Google Scholar
  9. Meissl P (1971) Preparations for the numerical evaluation of second-order Molodensky-type formulas. Report 163, Dept Geod Sci & Surv, Ohio State University, Columbus.Google Scholar
  10. Molodensky MS, Eremeev VF, Yurkina MI (1962): Methods for Study of the External Gravitational Field and Figure of the Earth, Israeli Programme for the Translation of Scientific Publications, Jerusalem.Google Scholar
  11. Neyman YM, Li J, Liu Q (1996) Modification of Stokes and Vening-Meinesz formulas for the inner zone of arbitrary shape by minimisation of upper bound truncation errors, J Geod, 70: 410–418.Google Scholar
  12. Paul MK (1973) A method of evaluating the truncation error coefficients for geoidal height, Bull Géod, 47:413–425.CrossRefGoogle Scholar
  13. Rapp RH (1994) Separation between reference surfaces of selected vertical datums. Bull Géod, 69: 26–31.CrossRefGoogle Scholar
  14. Sandwell DT, Yale MM, Smith WHF (1995) Gravity anomaly profiles from ERS-1, TOPEX and Geosat altimetry, EOS Trans AGU, 76(17), S89.Google Scholar
  15. Schwarz KP, Sideris MG, Forsberg R (1990) The use of FFT techniques in physical geodesy, Geophys J Int 100:485–514.CrossRefGoogle Scholar
  16. Sideris MG (1994) Geoid determination by FFT techniques. Lecture Notes, International School for the Determination and Use of the Geoid, DIIAR, Politecnico di Milano.Google Scholar
  17. Sjöberg LE (1991) Refined least squares modification of Stokes’s formula. manuscr geod, 16: 367–375.Google Scholar
  18. Smith WHF, Wessel P (1990) Gridding with continuous curvature splines in tension, Geophys, 55(3): 293–305.CrossRefGoogle Scholar
  19. Stewart MP, Ding X, Tsakiri M, Featherstone WE (1997) The 1996 STATEFIX Project Final Report. Contract Report, School of Surveying and Land Information, Curtin University of Technology.Google Scholar
  20. Strang van Hees GL (1990) Stokes’s formula using fast Fourier techniques. manuscr geod, 15: 235–239.Google Scholar
  21. Vanicek P, Kleusberg A (1987) The Canadian geoid — Stokesian approach, manuscr geod, 12: 86–98.Google Scholar
  22. Vanicek P, Sjöberg LE (1991) Reformulation of Stokes’s theory for higher than second-degree reference field and modification of integration kernels, J Geophys Res, 96(B4): 6529–6540.CrossRefGoogle Scholar
  23. Wenzel H-G (1982) Geoid computation by least squares spectral combination using integral kernels, Proc IAG Conf, Tokyo.Google Scholar
  24. Wong L, Gore R (1969) Accuracy of geoid heights from modified Stokes kernels, Geophys J R astr Soc, 18: 81–91.Google Scholar
  25. Zelin G, Zuofa L (1992) Modified Stokes’s integral formulas using FFT. manuscr geod, 17: 227–232.Google Scholar
  26. Zhang KF, Featherstone WE (1997) A preliminary evaluation of the terrain effects on gravimetric geoid determination in Australia, Proc IAG Conf, Tokyo.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • W. E. Featherstone
    • 1
  • M. G. Sideris
    • 2
  1. 1.School of Spatial SciencesCurtin University of TechnologyPerthAustralia
  2. 2.Department of Geomatics EngineeringThe University of CalgaryCalgaryCanada

Personalised recommendations