Skip to main content

Structure and Evolution of Genes Encoding Polyubiquitin in Marine Sponges

  • Chapter
Molecular Evolution: Towards the Origin of Metazoa

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 21))

Abstract

Molecular biology, with its rapid advances in new techniques, has drastically influenced evolutionary investigations and a new field, molecular evolution, was recently established. In the previous period traditional evolutionary biologists based their investigations upon comparative anatomy, embryology and paleontology. The recognition of the enormous phylogenetic information in nucleotide (nt) and amino acid (aa) sequences directed the efforts of molecular evolutionists toward the extraction and analysis of that information. Comparative analysis of conserved genes (proteins) in different contemporary organisms provides information about ancient events in nature and greatly facilitates reconstruction of the biological history of the living world. The nature of the first common ancestor of all living organisms is one of the central, still unsolved problems in biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bachmair A, Finley D, Varshavsky A (1986) In vitro half-time of the protein is a function of its amino-terminal residue. Science 234: 179–186

    Article  PubMed  CAS  Google Scholar 

  • Baker RT, Board PG (1987) The human ubiquitin gene family: structure of a gene and pseudogenes from the UB B subfamily. Nucleic Acids Res 15: 443–463

    Article  PubMed  CAS  Google Scholar 

  • Baker RT, Tobias JW, Varshavsky A (1992) Ubiquitin specific proteases of Saccharomyces cerevisiae. J Biol Chem 267: 23364–23375

    PubMed  CAS  Google Scholar 

  • Biesalski HK, Doepner G, Tzimas G, Gamulin V, Schröder HC, Batel R, Nau H, Müller WEG (1992) Modulation of myb gene expression in sponges by retinoic acid. Oncogene 7: 1765–1774

    PubMed  CAS  Google Scholar 

  • Bond V, Schlesinger MJ (1986) The chicken ubiquitin gene contains a heat-shock promoter and expresses an unstable mRNA in heat-shocked cells. Mol Cell Biol 6: 4602–4610

    PubMed  CAS  Google Scholar 

  • Callis J, Carpenter T, Sun C-W, Vierstra RD (1995) Structure and evolution of genes encoding polyubiquitin and ubiquitin-like proteins in Arabidopsis thaliana ecotype Columbia. Genetics 139: 921–939

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1993) Kingdom Protozoa and its 18 phyla. Microbiol Rev 57: 953–994

    PubMed  CAS  Google Scholar 

  • De Laubenfels MW (1955) Archaeocyta and porifera. In: Moore RC (ed) Treatise on invertebrate paleontology, part E. Geological Society of American University of Kansas Press, Kansas, pp 22–122

    Google Scholar 

  • Doherty F, Mayer RJ (1992) Intracellular protein degradation. IRL Press, Oxford University Press, New York

    Google Scholar 

  • Dworkin-Rastl E, Shrutkowski A, Dworkin MB (1984) Multiple ubiquitin mRNAs during Xenopus laevis development contain tandem repeats of the 76 amino acid coding sequence. Cell 39: 321–325

    Article  PubMed  CAS  Google Scholar 

  • Einspanier R, Sharma HS, Scheit KH (1987) An mRNA encoding polyubiquitin in porcine corpus luteum: identification by cDNA cloning and sequencing. DNA 6: 395–400

    Article  PubMed  CAS  Google Scholar 

  • Eytan E, Ganoth A, Armon Y, Hershko A (1989) ATP-dependent incorporation of 20S protease into the 26S complex that degrades proteins conjugated to ubiquitin. Proc Natl Acad Sci USA 86: 7751–7755

    Article  PubMed  CAS  Google Scholar 

  • Finley D, Chau V (1991) Ubiquitination. Annu Rev Cell Biol 7: 25–69

    Article  CAS  Google Scholar 

  • Finley D, Varshavsky A (1985) The ubiquitin system: functions and mechanisms. Trends Biochem Sci 10: 343–346

    Article  CAS  Google Scholar 

  • Finley D, Özkaynak E, Varshavsky A (1987) The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation and other stresses. Cell 48: 1035–1046

    Article  PubMed  CAS  Google Scholar 

  • Finley D, Bartel B, Varshavsky A (1989) The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338: 394–401

    Article  PubMed  CAS  Google Scholar 

  • Gamulin V, Rinkevich B, Schäcke H, Kruse M, Müller IM, Müller WEG (1994) Cell adhesion receptors and nuclear receptors are highly conserved from the lowest Metazoa (marine sponges) to vertebrates. Biol Chem Hoppe Seyler 375: 583–588

    Article  PubMed  CAS  Google Scholar 

  • Glotzer M, Murray AW, Kirschner MW (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349: 132–138

    Article  PubMed  CAS  Google Scholar 

  • Goebl MG, Yochem J, Jentsch S, McGrath JP, Varshavsky A, Byers B (1988) The yeast cell cycle gene CDC34 encodes a ubiquitin-conjugating enzyme. Science 241: 1331–1335

    Article  PubMed  CAS  Google Scholar 

  • Goldstein G, Scheid M, Hammerling U, Boyse EA, Schlesinger DH, Niall HD (1975) Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc Natl Acad Sci USA 72: 11–15

    Article  PubMed  CAS  Google Scholar 

  • Graham RW, Jones D, Candido PM (1989) UbiA, the major polyubiquitin locus in Caenorhabditis elegans, has unusual structural features and is constitutively expressed. Mol Cell Biol 9: 268–277

    PubMed  CAS  Google Scholar 

  • Gramzow M, Schröder HC, Fritsche U, Kurelec B, Robitzki A, Zimmermann H, Friese K, Kreuter MH, Müller WEG (1989) Role of phospholipase A2 in the stimulation of sponge cell proliferation by the homologous lectin. Cell 59: 939–948

    Article  PubMed  CAS  Google Scholar 

  • Gropper K, Brandt RA, Elias S, Bearer CF, Mayer A, Schwartz AL, Ciechanover A (1991) The ubiquitin activating enzyme, El, is required for stress-induced lysosomal degradation of cellular proteins. J Biol Chem 266: 3602–3610

    PubMed  CAS  Google Scholar 

  • Henkart P, Humphreys S, Humphreys T (1973) Characterization of sponge aggregation factor. A unique proteoglycan complex. Biochemistry 12: 3045–3050

    Article  PubMed  CAS  Google Scholar 

  • Hershko A, Ciechanover A (1992) The ubiquitin system for protein degradation. Annu Rev Biochem 61: 761–807

    Article  PubMed  CAS  Google Scholar 

  • Higgins DG, Sharp PM (1988) CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73: 237–244

    Article  PubMed  CAS  Google Scholar 

  • Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2: 13–34

    PubMed  CAS  Google Scholar 

  • Jentsch S (1992) Ubiquitin dependent protein degradation: a cellular perspective. Trends Cell Biol 2: 98–103

    Article  PubMed  CAS  Google Scholar 

  • Jentsch S, McGrath JP, Varshavsky A (1987) The DNA repair gene RAD6 encodes a ubiquitinconjugating enzyme. Nature 329: 131–134

    Article  PubMed  CAS  Google Scholar 

  • Jentsch S, Seufert W, Hauser HP (1991) Genetic analysis of the ubiquitin system. Biochim Biophys Acta 1089: 127–139

    PubMed  CAS  Google Scholar 

  • Keeling PJ, Doolittle WF (1995) Concerted evolution in protists: recent homogenization of a polyubiquitin gene in Trichomonas vaginalis. J Mol Evol 41: 556–562

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1984) Compilation analysis of sequences upstream from the translation start site in eukaryotic mRNA. Nucleic Acids Res 12: 857–872

    Article  PubMed  CAS  Google Scholar 

  • Krebber H, Wöstmann C, Bakker-Grunwald T (1994) Evidence for the existence of a single ubiquitin gene in Giardia lamblia. FEBS Lett 343: 234–236

    Article  PubMed  CAS  Google Scholar 

  • Laszlo L, Doherty FJ, Osborn NU, Mayer RJ (1990) Ubiquitinated protein conjugates are specifically enriched in the lysosomal system of fibroblasts. FEBS Lett 261: 365–368

    Article  PubMed  CAS  Google Scholar 

  • Li W-H, Tanimura M, Sharp PM (1987) An evaluation of the molecular clock hypothesis using mammalian DNA sequences. J Mol Evol 25: 330–342

    Article  PubMed  CAS  Google Scholar 

  • Mayer AN, Wilkinson KD (1989) Detection, resolution and nomenclature of multiple ubiquitin carboxyl-terminal esterases from bovine calf thymus. Biochemistry 28: 166–172

    Article  PubMed  CAS  Google Scholar 

  • Mayer RJ, Arnold J, Laszlo L, Landon M, Lowe J (1991) Ubiquitin in health and disease. Biochim Biophys Acta 1089: 141–157

    PubMed  CAS  Google Scholar 

  • Müller WEG (1995) Molecular phylogeny of Metazoa (animals): monophyletic origin. Naturwissenschaften 82: 321–329

    Article  PubMed  Google Scholar 

  • Müller WEG, Zahn RK (1973) Purification and characterization of a species-specific aggregation factor in sponges. Exp Cell Res 80: 95–104

    Article  PubMed  Google Scholar 

  • Müller WEG, Diehl-Seifert B, Gramzow M, Friese U, Renneisen K, Schröder HC (1988) Interrelation between extracellular adhesion proteins and extracellular matrix in reaggregation of dissociated sponge cells. Int Rev Cytol 111: 211–229

    Article  Google Scholar 

  • Müller WEG, Ugarkovic D, Gamulin V, Weiler BE, Schröder HC (1990) Intracellular signal transduction pathways in sponges. Electron Microsc Rev 3: 97–114

    Article  PubMed  Google Scholar 

  • Müller WEG, Schröder HC, Müller IM, Gamulin V (1994) Phylogenetic relationship of ubiquitin repeats of the polyubiquitin gene from the marine sponge Geodia cydonium. J Mol Evol 39: 369–377

    Article  PubMed  Google Scholar 

  • Müller WEG, Müller IM, Schröder HC, Gamulin V (1995a) On the monophyletic evolution of the Metazoa. Braz J Med Biol Res 27: 2083–2097

    Google Scholar 

  • Müller WEG, Müller IM, Rinkevich B, Gamulin V (1995b) Molecular evolution: evidence for the monophyletic origin of multicellular animals. Naturwissenschaften 82: 36–38

    Article  PubMed  Google Scholar 

  • Nagylaki T (1984) The evolution of multigene families under intrachromosomal gene conversion. Genetics 106: 529–548

    PubMed  CAS  Google Scholar 

  • Neves A, Guerreiro P, Rodrigues-Pousada C (1990) Striking changes in polyubiquitin genes of Tetrahymena pyriformis. Nucleic Acids Res 18: 656

    Article  PubMed  CAS  Google Scholar 

  • Nickel BE, Allis CD, Davie JR (1989) Ubiquitinated histone H2B is preferentially located in transcriptionally active chromatin. Biochemistry 28: 958–963

    Article  PubMed  CAS  Google Scholar 

  • Ohmachi T, Giorda R, Shaw DR, Ennis HL (1989) Molecular organization of developmentally regulated Dictyostelium discoideum ubiquitin cDNAs. Biochemistry 28: 5226–5231

    Article  PubMed  CAS  Google Scholar 

  • Ohta T (1980) Evolution and variation of mutligene families. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ohta, T (1984) Some models of gene conversion for treating the evolution of multigene families. Genetics 106: 527–528

    Google Scholar 

  • Ohta T, Dover GA (1983) Population genetics of multigene families that are dispersed into two or more chromosomes. Proc Natl Acad Sci USA 80: 4079–4083

    Article  PubMed  CAS  Google Scholar 

  • Özkaynak E, Finley D, Varshavsky A (1984) The yeast ubiquitin gene: head-to-tail repeats encoding a polyubiquitin precursor protein. Nature 312: 663–666

    Article  PubMed  Google Scholar 

  • Özkaynak E, Finley D, Varshavsky A (1987) The yeast ubiquitin genes: a family of natural gene fusions. EMBO J 6: 1429–1439

    PubMed  Google Scholar 

  • Pfeifer K, Frank W, Schröder HC, Gamulin V, Rinkevich B, Batel R, Müller IM, Müller WEG (1993a) Cloning of the polyubiquitin cDNA from the marine sponge Geodia cydonium and its preferential expression during reaggregation of cells. J Cell Sci 106: 545–554

    PubMed  CAS  Google Scholar 

  • Pfeifer K, Haasemann M, Gamulin V, Bretting H, Fahrenholz F, Müller WEG (1993b) S-type lectins occur also in invertebrates: high conservation of the carbohydrate recognition domain in the lectin genes from the marine sponge Geodia cydonium. Glycobiology 6: 179–184

    Article  Google Scholar 

  • Schäcke H, Schröder HC, Gamulin V, Rinkevich B, Müller IM, Müller WEG (1994) Molecular cloning of a receptor tyrosine kinase from the marine sponge Geodia cydonium: a new member of the receptor tyrosine kinase class II family in invertebrates. Mol Membr Biol 11: 101–107

    Article  PubMed  Google Scholar 

  • Schlesinger DH, Goldstein G (1975) Molecular conservation of 74 amino acid sequence of ubiquitin between cattle and man. Nature 255: 423–424

    Article  PubMed  CAS  Google Scholar 

  • Schwartz LM, Myer A, Kosz L, Engelstein M, Maier C (1990) Activation of polyubiquitin gene expression during developmentally programmed cell death. Neuron 5: 411–419

    Article  PubMed  CAS  Google Scholar 

  • Sharp PM, Li W-H (1987a) Molecular evolution of ubiquitin genes. Trends Ecol Evol 2: 328–332

    Article  PubMed  CAS  Google Scholar 

  • Sharp PM, Li W-H (1987b) Ubiquitin genes as a paradigm of concerted evolution of tandem repeats. J Mol Evol 25: 58–64

    Article  PubMed  CAS  Google Scholar 

  • Sharp PM, Li W-H (1987c) The codon adaptation index - a measure of directional synonymous codon usage bias, and its potential application. Nucleic Acids Res 15: 1281–1295

    Article  PubMed  CAS  Google Scholar 

  • Short JM, Fernandez J, Sorger JA, Huse WD, (1988) Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. Nucleic Acids Res 7583–7600

    Article  Google Scholar 

  • Swindle J, Ajioka J, Eisen H, Sanwal B, Jacquemot C, Browder Z, Buck G (1988) The genomic organization and transcription of the ubiquitin genes of Trypanosoma cruzi. EMBO J 7: 1121–1127

    PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Vijay-Kumar S, Bugg CE, Cook WJ (1987a) Structure of ubiquitin refined at 1.8 Ã… resolution. J Mol Biol 194: 531–544

    Article  PubMed  CAS  Google Scholar 

  • Vijay-Kumar S, Bugg CE, Wilkinson KD, Vierstra RD, Hatfield P (1987b) Comparison of the three-dimensional structures of human, yeast and oat ubiquitin. J Biol Chem 262: 6396–6399

    PubMed  CAS  Google Scholar 

  • Wiborg O, Pedersen MS, Wind A, Berglund LE, Marcker KA, Vuust J (1985) The human ubiquitin multigene family: some genes contain multiple directly repeated ubiquitin coding sequences. EMBO J 4: 755–759

    PubMed  CAS  Google Scholar 

  • Woese CR (1983) The primary lines of descent and universal ancestor. In: Bendall DS (ed) Evolution from molecules to man. Cambridge University Press, Cambridge, pp 209–233

    Google Scholar 

  • Wöstmann C, Tannich E, Bakker-Grunwald T (1992) Ubiquitin of Entamoeba histolytica deviates in six amino acid residues from the consensus of all other known ubiquitins. FEBS Lett 308: 54–58

    Google Scholar 

  • Wofl S, Lottspeich F, Baumeister W (1993) Ubiquitin in the archaebacterium Thermoplasma acidophilum. FEBS Lett 326: 42–44

    Article  Google Scholar 

  • Wöstmann C, Tannich E, Bakker-Grunwald T (1992) Ubiquitin of Entamoeba histolytica deviates in six amino acid residues from the consensus of all other known ubiquitins. FEBS Lett 308: 54–58

    Article  PubMed  Google Scholar 

  • Wray CG, DeSalle R (1994) Phylogenetic utility of ubiquitin DNA sequence from 3 marine protest lineages. Mol Mar Biol Biotechnol 3: 13–22

    PubMed  CAS  Google Scholar 

  • Zarkower D, Stephenson P, Sheets M, Wickens M (1986) The AAUAAA sequence is required both for cleavage and for polyadenilation of Simian virus 40 pre-mRNA in vitro. Mol Cell Biol 6: 2317–2323

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gamulin, V., Lukic, L. (1998). Structure and Evolution of Genes Encoding Polyubiquitin in Marine Sponges. In: Müller, W.E.G. (eds) Molecular Evolution: Towards the Origin of Metazoa. Progress in Molecular and Subcellular Biology, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72236-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72236-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72238-7

  • Online ISBN: 978-3-642-72236-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics