Skip to main content

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 21))

Abstract

The word “collagen” was used in the 19th century to characterize a constituent of connective tissue (mainly skin or bones) which yields gelatin on boiling. The staining properties of collagen made it obviously visible on tissue sections. From this histological detection in human and vertebrate organs, it was suggested that at least some invertebrates actually contain the same kind of substance. The development of electron microscopy and the improvement of biochemical analyses led to the clear localization of collagen in both vertebrates and invertebrates (Piez and Gross 1959). However, most studies focused on the easily recognizable collagen fibrils. Later, it became evident that there was a family of collagenous proteins and that the definition had to be clarified (for a review see van der Rest and Garrone 1990, 1991; van der Rest et al. 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aho S, Turakainen H, Onnela ML, Boedtker H (1993) Characterization of an intronless collagen gene family in the marine sponge Microciona prolifera. Proc Natl Acad Sci USA 90: 7288–7292

    PubMed  CAS  Google Scholar 

  • Andrikopoulos K, Liu X, Keene DR, Jaenisch R, Ramirez F (1995) Targeted mutation in the Col5A2 gene reveals a regulatory role for type V collagen during matrix assembly. Nature [Genet] 9: 31–36

    CAS  Google Scholar 

  • Arnoux B, Mérigeau K, Saludjian P, Norris F, Norris K, Bjorn S, Olsen O, Petersen L, Ducruix A (1995) The 1.6 A structure of Kunitz-type domain from the a3 chain of human type VI collagen. J Mol Biol 246: 609–617

    PubMed  CAS  Google Scholar 

  • Bailey AJ (1985) The collagen of the echinodermata. In: Bairati A, Garrone R (eds) Biology of invertebrate and lower vertebrate collagens. Plenum Press, New York, pp 345–368

    Google Scholar 

  • Bairati A (1985) The collagens of the mollusca. In: Bairati A, Garrone R (eds) Biology of invertebrate and lower vertebrate collagens. Plenum Press, New York, pp 277–297

    Google Scholar 

  • Bairati A, Garrone R (eds) (1985) Biology of invertebrate and lower vertebrate collagens. Plenum Press, New York, 583 pp

    Google Scholar 

  • Bairati A, De Biasi S, Cheli F, Oggioni A (1987) The head cartilage of cephalopods. I. Architecture and ultrastructure of the extracellular matrix. Tissue Cell 19: 673–685

    Google Scholar 

  • Bairati A, Cheli F, Oggioni A, Vitellaro-Zuccarello L (1989) The head cartilage of cephalopods. II. Ultrastructure of isolated native collagen fibrils and of polymeric aggregates obtained in vitro: comparison with the cartilage of mammals. J Ultrastruct Mol Struct Res 102: 132–138

    PubMed  CAS  Google Scholar 

  • Bairati A, Comazzi M, Gioria M (1995) A comparative microscopic and ultrastructural study of perichondrial tissue in cartilage of Octopus vulgaris ( Cephalopoda, Mollusca). Tissue Cell 27: 515–523

    Google Scholar 

  • Bella J, Berman HM (1996) Crystallographic evidence for Ca-H—0 = C hydrogen bonds in a collagen triple helix. J Mol Biol 264: 734–742

    PubMed  CAS  Google Scholar 

  • Bella J, Eaton M, Broadsky B, Berman HM (1994) Crystal and molecular structure of a collagenlike peptide at 1.9 Á resolution. Science 266: 75–81

    PubMed  CAS  Google Scholar 

  • Bella J, Brodsky B, Berman HM (1995) Hydration structure of a collagen peptide. Structure 3: 893–906

    PubMed  CAS  Google Scholar 

  • Bisoffi M, Betschart B (1996) Identification and sequence comparison of a cuticular collagen of Brugia pahangi. Parasitology 113: 145–155

    PubMed  CAS  Google Scholar 

  • Blumberg B, MacKrell AJ, Olson PF, Kurkinen M, Monson JM, Natzle JE, Fessler JH (1987) Basement membrane procollagen IV and its specialized carboxyl domain are conserved in Drosophila, mouse and human. J Biol Chem 262: 5947–5959

    PubMed  CAS  Google Scholar 

  • Bork P (1992) The modular architecture of vertebrate collagens. FEBS Lett 307: 49–54

    PubMed  CAS  Google Scholar 

  • Bork P, Downing KA, Kieffer B, Campbell ID (1996) Structure and distribution of modules in extracellular proteins. Q Rev Biophys 29: 119–167

    PubMed  CAS  Google Scholar 

  • Boute N, Exposito JY, Boury-Esnault N, Vacelet J, Noro N, Miyazaki K, Yoshizato, Garrone R (1996) Type IV collagen in sponges, the missing link in basement membrane ubiquity. Biol Cell 88: 37–44

    PubMed  CAS  Google Scholar 

  • Brand DD, Blanquet RS, Phelan MA (1993) Collagenaceous, thiol-containing proteins of the cnidarian nematocyst: a comparison of the chemistry and protein distribution patterns in two types of cnidae. Comp Biochem Physiol [B] 106: 115–124

    Google Scholar 

  • Brodsky B, Shah N (1995) The triple-helix motif in proteins. FASEB J 9: 1537–1546

    PubMed  CAS  Google Scholar 

  • Brodsky B, Ramshaw JAM (1997) The collagen triple-helix structure. Matrix Biol 15: 545–554

    PubMed  CAS  Google Scholar 

  • Brown JC, Timpl R (1995) The collagen superfamily. Int Arch Allergy Immunol 107: 484–490

    PubMed  CAS  Google Scholar 

  • Bruns RR (1984) Beaded filaments and long-spacing fibrils: relation to type VI collagen. J Ultrastruct Res 89: 136–145

    PubMed  CAS  Google Scholar 

  • Caulagi VR, Rajan TV (1995) The structural organization of an a2(type IV) basement membrane collagen gene from the filarial nematode Brugia malayi. Mol Biochem Parasitol 70: 227–229

    PubMed  CAS  Google Scholar 

  • Cecchini JP, Knibiehler B, Mirre C, Le Parco Y (1987) Evidence for a type-IV-related collagen in Drosophila melanogaster. Evolutionary constancy of the carboxy-terminal noncollagenous domain. Eur J Biochem 165: 587–593

    Google Scholar 

  • Chareyre P, Besson MT, Fourche J, Bosquet G (1996) Identification of a Bombyx collagenous protein with multiple short domains of Gly-Xaa-Yaa repeats. cDNA characterization and regulation of expression. Insect Biochem Mol Biol 26: 677–685

    PubMed  CAS  Google Scholar 

  • Chen Q, Gibney E, Fitch JM, Linsenmayer C, Schmid TM, Linsenmayer TF (1990) Long-range movement and fibril association of type X collagen within embryonic cartilage matrix. Proc Natl Acad Sci USA 87: 8046–8050

    PubMed  CAS  Google Scholar 

  • Christiano AM, Hoffman GG, Chung-Honet LC, Lee S, Cheng W, Uitto J, Greenspan DS (1994) Structural organization of the human type VII collagen gene (COL7A1), composed of more exons than any previously characterized gene. Genomics 21: 169–179

    PubMed  CAS  Google Scholar 

  • Cox GN (1992) Molecular and biochemical aspects of nematode collagens. J Parasitol 78: 1–15

    PubMed  CAS  Google Scholar 

  • Cox GN, Shamansky LM, Boisvenue RJ (1990) Haemonchus contortus: evidence that the 3A3 collagen gene is a member of an evolutionarily conserved family of nematode cuticle collagens. Exp Parasitol 70: 175–185

    PubMed  CAS  Google Scholar 

  • Cronshaw AD, Fothergill-Gilmore LA, Hulmes DSJ (1995) The proteolytic processing site of the precursor of lysyl oxidase. Biochem J 306: 279–284

    PubMed  CAS  Google Scholar 

  • D’Alessio M, Ramirez F, Suzuki H, Solursh M, Gambino R (1990) Cloning of a fibrillar collagen gene expressed in the mesenchymal cells of the developing sea urchin embryo. J Biol Chem 265: 7050–7054

    PubMed  Google Scholar 

  • Dick TA, Wright KA (1973) The ultrastructure of the cuticle of the nematode Syphacia obvelata. Can J Zool 51: 187–196

    PubMed  CAS  Google Scholar 

  • Diehl-Seifert B, Kurelec B, Zahn RK, Dorn A, Jericevic B, Uhlenbruck G, Müller WEG (1985) Attachment of sponge cells to collagen substrata: effect of a collagen assembly factor. J Cell Sci 79: 271–285

    PubMed  CAS  Google Scholar 

  • Duvert M, Salat C (1990) Ultrastructural and cytochemical studies on the connective tissue of chaetognaths. Tissue Cell 22: 865–878

    Google Scholar 

  • Engel J (1991) Common structural motifs in proteins of the extracellular matrix. Curr Opin Cell Biol 3: 779–785

    PubMed  CAS  Google Scholar 

  • Erlinger R, Welsh U, Scott JE (1993) Ultrastructural and biochemical observations on proteoglycans and collagen in the mutable connective tissue of the feather star Antedon bifida ( Echinodermata, Crinoidea). J Anat 183: 1–11

    Google Scholar 

  • Exposito JY, Garrone R (1990) Characterization of a fibrillar collagen gene in sponges reveals the early evolutionary appearance of two collagen gene families. Proc Natl Acad Sci USA 87: 6669–6673

    PubMed  CAS  Google Scholar 

  • Exposito JY, Ouazana R, Garrone R (1990) Cloning and sequencing of a Porifera partial cDNA coding for a short-chain collagen. Eur J Biochem 190: 401–406

    PubMed  CAS  Google Scholar 

  • Exposito JY, Le Guellec D, Lu Q, Garrone R (1991) Short chain collagens in sponges are encoded by a family of closely related genes. J Biol Chem 266: 21923–21928

    PubMed  CAS  Google Scholar 

  • Exposito JY, D’Alessio M, Ramirez F (1992a) Novel amino-terminal propeptide configuration in a fibrillar procollagen undergoing alternative splicing. J Biol Chem 267: 17404–17408

    PubMed  CAS  Google Scholar 

  • Exposito JY, D’Alessio M, Solursh M, Ramirez F (1992b) Sea urchin collagen evolutionarily homologous to vertebrate pro-a2(I) collagen. J Biol Chem 267: 15559–15562

    PubMed  CAS  Google Scholar 

  • Exposito JY, D’Alessio M, Di Liberto M, Ramirez F (1993a) Complete primary structure of a sea urchin type IV collagen chain and analysis of the 5’ end of its gene. J Biol Chem 268: 5249–5254

    PubMed  CAS  Google Scholar 

  • Exposito JY, van der Rest M, Garrone R (1993b) The complete intron/exon structure of Ephydatia mülleri fibrillar collagen gene suggests a mechanism for the evolution of an ancestral gene module. J Mol Evol 37: 254–259

    PubMed  CAS  Google Scholar 

  • Exposito JY, Suzuki H, Geourjon C, Garrone R, Solursh M, Ramirez F (1994) Identification of a cell lineage-specific gene coding for a sea urchin a2(IV)-like collagen chain. J Biol Chem 269: 13167–13171

    PubMed  CAS  Google Scholar 

  • Exposito JY, Boute N, Deleage G, Garrone R (1995) Characterization of two genes coding for a similar four-cysteine motif of the amino-terminal propeptide of a sea urchin fibrillar collagen. Eur J Biochem 234: 59–65

    PubMed  CAS  Google Scholar 

  • Fessler JH, Fessler LI (1989) Drosophila extracellular matrix. Annu Rev Cell Biol 5: 309–339

    PubMed  CAS  Google Scholar 

  • Fessler LI, Condic ML, Nelson RE, Fessler JH, Fristrom JW (1993) Site-specific cleavage of basement membrane collagen IV during Drosophila metamorphosis. Development 117: 1061–1069

    PubMed  CAS  Google Scholar 

  • Franc S (1985) Collagen of coelenterates. In: Bairati A, Garrone R (eds) Biology of invertebrate and lower vertebrate collagens. Plenum Press, New York, pp 197–210

    Google Scholar 

  • Francois J (1985) The collagen of the Arthropoda. In: Bairati A, Garrone R (eds) Biology of invertebrate and lower vertebrate collagens. Plenum Press, New York, pp 345–368

    Google Scholar 

  • Gaill F (1993) Aspects of life development at deep sea hydrothermal vents. FASEB J 7: 558–565

    PubMed  CAS  Google Scholar 

  • Gaill F, Bouligand Y (1985) Long pitch helices in invertebrate collagens. In: Bairati A, Garrone R (eds) Biology of invertebrate and lower vertebrate collagens. Plenum Press, New York, pp 267–274

    Google Scholar 

  • Gaill F, Wiedemann H, Mann K, Kühn K, Timpl R, Engel J (1991) Molecular characterization of cuticle and interstitial collagens from worms collected at deep sea hydrothermal vents. J Mol Biol 221: 209–223

    PubMed  CAS  Google Scholar 

  • Gaill F, Mann K, Wiedemann H, Engel J, Timpl R (1995) Structural comparison of cuticle and interstitial collagens from annelids living in shallow sea-water and at deep-sea hydrothermal vents. J Mol Biol 246: 284–294

    PubMed  CAS  Google Scholar 

  • Garrone R (1978) Phylogenesis of connective tissue. Karger, Basel

    Google Scholar 

  • Garrone R (1984) Formation and involvement of extracellular matrix in the development of sponges, a primitive multicellular system. In: Trelstad RL (ed) The role of extracellular matrix in development. Liss, New York, pp 461–477

    Google Scholar 

  • Garrone R (1985) The collagen of the Porifera. In: Bairati A, Garrone R (eds) Biology of invertebrate and lower vertebrate collagens. Plenum Press, New York, pp 157–175

    Google Scholar 

  • Garrone R, Hue A, Junqua S (1975) Fine structure and physicochemical studies on the collagen of the marine sponge Chondrosia reniformis Nardo. J Ultrastruct Res 52: 261–275

    PubMed  CAS  Google Scholar 

  • Gramzow M, Schröder HC, Uhlenbruck G, Batel R, Müller WEG (1988) Sponge aggregation factor: identification of the specific collagen-binding site by means of a monoclonal antibody. J Histochem Cytochem 36: 205–212

    PubMed  CAS  Google Scholar 

  • Greenspan DS (1993) The carboxyl-terminal half of type VII collagen, including the non-collagenous NC-2 domain and intron/exon organization of the corresponding region of the COL7A1 gene. Hum Mol Gen 2: 273–278

    PubMed  CAS  Google Scholar 

  • Gross J, Sokal Z, Rougvie M (1956) Structural and chemical studies on the connective tissue of marine sponges. J Histochem Cytochem 4: 227–246

    PubMed  CAS  Google Scholar 

  • Guo X, Kramer JM (1989) The two Caenorhabditis elegans basement membrane (type IV) collagen genes are located on separate chromosomes. J Biol Chem 264: 17574–17582

    PubMed  CAS  Google Scholar 

  • Guo X, Johnson JJ, Kramer JM (1991) Embryonic lethality caused by mutations in basement membrane collagen of C. Elegans. Nature 349: 707–709

    Google Scholar 

  • Hermans CO (1970) The periodicity of collagen in the brain sheath of a polychaete. J Ultrastruct Res 30: 255–261

    PubMed  CAS  Google Scholar 

  • Holstein TW, Benoit M, Herder GV, Wanner G, David CN, Gaub HE (1994) Fibrous mini-collagens in Hydra nematocysts. Science 265: 402–404

    PubMed  CAS  Google Scholar 

  • Hopkinson SB, Baker SE, Jones JCR (1995) Molecular genetic studies of a human epidermal autoantigen (the 190-kDa bullous pemphigoid antigen/BP 180): identification of functionally important sequences within the BP 180 molecule and evidence for an interaction between BP 180 and a6 integrin. J Cell Biol 130: 117–125

    PubMed  CAS  Google Scholar 

  • Hudson BG, Reeders SY, Tryggvason K (1993) Type IV collagen: structure, gene organization and role in human diseases. J Biol Chem 268: 26033–26036

    PubMed  CAS  Google Scholar 

  • Humbert-David N, Garrone R (1993) A six-armed tenascin-like protein extracted from the Porifera Oscarella tuberculata ( Homosclerophorida ). Eur J Biochem 216: 255–260

    Google Scholar 

  • Hunt S (1985) The selachian egg case collagen. In: Bairati A, Garrone R (eds) Biology of invertebrate and lower vertebrate collagens. Plenum Press, New York, pp 409–434

    Google Scholar 

  • Johnstone IL, Shafi Y, Majeed A, Barry JD (1996) Cuticular collagen genes from the parasitic nematode Ostertagia circumcincta. Mol Biochem Parasitol 80: 103–112

    PubMed  CAS  Google Scholar 

  • Kellokumpu S, Sormunen R, Heikkinen J, Myllylä R (1994) Lysyl hydroxylase, a collagen processing enzyme, exemplifies a novel class of luminally-oriented peripheral membrane proteins in the endoplasmic reticulum. J Biol Chem 269: 30524–30529

    PubMed  CAS  Google Scholar 

  • Kellokumpu S, Suoka M, Risteli L, Myllylä R (1997) Protein disulfide isomerase and newly synthesized procollagen chains form higher-order structures in the lumen of the endoplasmic reticulum. J Biol Chem 272: 2770–2777

    PubMed  CAS  Google Scholar 

  • Kimura S, Takema Y, Kubota M (1981) Octopus skin collagen. J Biol Chem 256: 13230–13234

    PubMed  CAS  Google Scholar 

  • Kimura S, Omura Y, Ishida M, Shirai H (1993) Molecular characterization of fibrillar collagen from the body wall of starfish Asterias amurensis. Comp Biochem Physiol [B] 104: 663–668

    Google Scholar 

  • Kingsley RJ, Tsuzaki M, Watabe N, Mechanic GL (1990) Collagen in the spicule organic matrix of the gorgonian Leptogorgia virgulata. Biol Bull 179: 207–213

    PubMed  CAS  Google Scholar 

  • Kivirikko KI, Myllylä R, Pihlajaniemi T (1989) Protein hydroxylation: prolyl 4-hydroxylase, an enzyme with four cosubstrates and a multifunctional subunit. FASEB J 3: 1609–1617

    PubMed  CAS  Google Scholar 

  • Knight DP, Feng D, Stewart M (1996) Structure and function of the selachian egg case. Biol Rev 71: 81–111

    Google Scholar 

  • Koivu J, Myllylä R, Helaakoski T, Pihlajaniemi T, Tasanen K, Kivirikko KI (1987) A single polypeptide acts both as the ß subunit of prolyl 4-hydroxylase and as a protein disulfide isomerase. J Biol Chem 262: 6447–6449

    PubMed  CAS  Google Scholar 

  • Kong RYC, Kwan KM, Lau ET, Thomas JT, Boot-Handford RP, Grant ME, Cheah KSE (1993) Intronexon structure, alternative use of promoter and expression of the mouse collagen X gene, Colloa-1. Eur J Biochem 213: 99–111

    PubMed  CAS  Google Scholar 

  • Kramer JM (1994) Structures and functions of collagens in Caenorhabditis elegans. FASEB J 8: 329–336

    PubMed  CAS  Google Scholar 

  • Kühn K (1994) Basement membrane (type IV) collagen. Matrix Biol 14: 439–445

    Google Scholar 

  • Kurz EM, Holstein TW, Petri BM, Engel J, David CN (1991) Mini-collagens in Hydra nematocytes. J Cell Biol 115: 1159–1169

    PubMed  CAS  Google Scholar 

  • Kwan APL, Cummings CE, Chapman JA, Grant ME (1991) Macromolecular organization of chicken type X collagen in vitro. J Cell Biol 114: 597–604

    PubMed  CAS  Google Scholar 

  • Ledger PW (1974) Types of collagen fibres in the calcareous sponges Sycon and Leucandra. Tissue Cell 6: 385–389

    PubMed  CAS  Google Scholar 

  • Leivo I, Tani T, Laitinen L, Bruns R, Kivilaakso E, Lehto V, Burgeson RE, Virtanen I (1996) Anchoring complex components laminin-5 and type VII collagen in intestine: association with migrating and differentiating enterocytes. J Histochem Cytochem 44: 1267–1277

    PubMed  CAS  Google Scholar 

  • Lepescheux L (1988) Spatial organization of collagen in annelid cuticle: order and defects. Biol Cell 62: 17–31

    PubMed  CAS  Google Scholar 

  • Lethias C, Exposito JY, Garrone R (1997) Collagen fibrillogenesis during sea urchin development. Retention of SURF motifs from the N-propeptide of the 2a chain in mature fibrils. Eur J Biochem 245: 434–440

    PubMed  CAS  Google Scholar 

  • Li K, Sawamura D, Giudice GJ, Diaz LA, Mattei MG, Chu ML, Uitto J (1991) Genomic organization of collagenous domains and chromosomal assignment of human 180kDa bullous pemphigoid antigen-2, a novel collagen of stratified squamous epithelium. J Biol Chem 266: 24064–24069

    PubMed  CAS  Google Scholar 

  • Li K, Tamai K, Tan EM, Uitto J (1993) Cloning of type XVII collagen. J Biol Chem 268: 8825–8834

    PubMed  CAS  Google Scholar 

  • Li Y, Lacerda DA, Warman ML, Beier DR, Yoshioka H, Ninomiya Y, Oxford JT, Morris NP, Andrikopoulos K, Ramirez F, Wardell BB, Lifferth GD, Teuscher C, Woodward SR, Taylor BA, Seegmiller RE, Olsen BR (1995) A fibrillar collagen gene, Colllal, is essential for skeletal morphogenesis. Cell 80: 423–430

    Google Scholar 

  • Lu Valle P, Iwamoto M, Fanning P, Pacifici M, Olsen BR (1993) Multiple negative elements in a gene that codes for an extracellular matrix protein, collagen X, restrict expression to hypertrophic chondrocytes. J Cell Biol 121: 1173–1179

    Google Scholar 

  • Mann K, Gaill F, Timpl R (1992) Amino-acid sequence and cell-adhesion activity of a fibril- forming collagen from the tube worm Riftia pachyptila living at deep sea hydrothermal vents. Eur J Biochem 210: 839–847

    PubMed  CAS  Google Scholar 

  • Mann K, Mechling DE, Bachinger HP, Eckerskorn C, Gaill F, Timpl R (1996) Glycosylated threonine but not 4-hydroxyproline dominates the triple helix stabilizing positions in the sequence of a hydrothermal vent worm cuticle collagen. J Mol Biol 261: 255–266

    PubMed  CAS  Google Scholar 

  • MacBeath JRE, Kielty CM, Shuttleworth CA (1996) The type VIII collagen is a product of vascular smooth-muscle cells in development and disease. Biochem J 319: 993–998

    PubMed  CAS  Google Scholar 

  • Mazzorana M, Gruffat H, Sergeant A, van der Rest M (1993) Mechanism of collagen trimer formation. J Biol Chem 268: 3029–3032

    PubMed  CAS  Google Scholar 

  • Mizuta S, Yoshinaka R, Sato M, Sakaguchi M (1994) Characterization of collagen in muscle of several crustacean species. Comp Biochem Physiol [B] 107: 365–370

    Google Scholar 

  • Muragaki Y, Jacenko O, Apte S, Mattei MG, Ninomiya Y, Olsen BR (1991) The a2(VIII) collagen gene. J Biol Chem 266: 7721–7727

    PubMed  CAS  Google Scholar 

  • Murray LW, Tanzer ML (1985) The collagen of Annelida. In: Bairati A, Garrone R (eds) Biology of invertebrate and lower vertebrate collagens. Plenum Press, New York, pp 243–258

    Google Scholar 

  • Noelken ME, Wisdom BJ, Dean DC, Hung CH, Hudson BG (1986) Intestinal basement membrane of Ascaris suum. Molecular organization and properties of the collagen molecules. J Biol Chem 261: 4706–4714

    Google Scholar 

  • Olsen BR (1996) Collagen it takes and bone it makes. Curr Biol 6: 645–647

    PubMed  CAS  Google Scholar 

  • Omura Y, Urano N, Kimura S (1996) Occurrence of fibrillar collagen with structure of (al)2a2 in the test of sea urchin Asthenosoma ijimai. Comp Biochem Physiol [B] 115: 63–68

    Google Scholar 

  • Pedersen KJ (1968) Some morphological and histochemical aspects of nemertean connective tissue. Z Zellforsch 90: 570–595

    PubMed  CAS  Google Scholar 

  • Pettitt J, Kingston IB (1994) Developmentally regulated alternative splicing of a nematode type IV collagen gene. Dev Biol 161: 22–29

    PubMed  Google Scholar 

  • Piez KF, Gross J (1959) The amino acid composition and morphology of some invertebrate and vertebrate collagens. Biochim Biophys Acta 34: 24–29

    PubMed  CAS  Google Scholar 

  • Pihlajaniemi T, Tamminen M (1990) The al chain of type XIII collagen consists of three collagenous and four noncollagenous domains, and its primary transcript undergoes complex alternative splicing. J Biol Chem 265: 16922–16928

    PubMed  CAS  Google Scholar 

  • Prockop DJ, Kivirikko KI (1995) Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64: 403–434

    PubMed  CAS  Google Scholar 

  • Ray C, Wang TY, Hussey RS (1996) Identification and characterization of the Meloidogyne incognita coll cuticle collagen gene. Mol Bioch Parasitol 83: 121–124

    CAS  Google Scholar 

  • Reber-Muller S, Spissinger T, Scuchert P, Spring J, Schmid V (1995) An extracellular matrix protein of jellyfish homologous to mammalian fibrillins forms different fibrils depending on the life stage of the animal. Dev Biol 169: 662–672

    PubMed  CAS  Google Scholar 

  • Revenko I, Sommer F, Tran Minh D, Garrone R, Franc JM (1994) Atomic force microscopy study of collagen fibre structure. Biol Cell 80: 67–69

    PubMed  CAS  Google Scholar 

  • Sakai L, Keene DR, Morris NP, Burgeson RE (1986) Type VII collagen is a major structural component of anchoring fibrils. J Cell Biol 103: 1577–1586

    PubMed  CAS  Google Scholar 

  • Sarras MP, Madden ME, Zhang X, Gunwar S, Huff JK, Hudson BG (1991) Extracellular matrix (mesoglea) of Hydra vulgaris. I. Isolation and characterization. Dev Biol 148: 481–494

    Google Scholar 

  • Sawada H, Konomi H, Hirosawa K (1990) Characterization of the collagen in the hexagonal lattice of Descemet’s membrane: its relation to type VIII collagen. J Cell Biol 110: 219–227

    PubMed  CAS  Google Scholar 

  • Schmut O, Roll P, Reich ME (1980) Biochemical and electronmicroscopic investigations on Helix pomatia collagen. Z Naturforsch 35c: 376–379

    CAS  Google Scholar 

  • Shimizu K, Yoshizato K (1993) Involvement of collagen synthesis in tissue reconstitution by dissociated sponge cells. Dev Growth Differ 35: 293–300

    CAS  Google Scholar 

  • Sibley MH, Johnson JJ, Mello CC, Kramer JM (1993) Genetic identification, sequence and alternative splicing of Caenorhabditis elegans a2(IV) collagen gene. J Cell Biol 123: 255–263

    PubMed  CAS  Google Scholar 

  • Sibley MH, Graham PL, von Mende N, Kramer JM (1994) Mutations in the a2(IV) basement membrane collagen gene of Caenorhabditis elegans produce phenotypes of differing severities. EMBO J 13: 3278–3285

    PubMed  CAS  Google Scholar 

  • Sicot FX, Exposito JY, Masselot M, Garrone R, Deutsch J, Gaill F (1997) Cloning of an annelid fibrillar-collagen gene and phylogenetic analysis of vertebrate and invertebrate collagens. Eur J Biochem 246: 50–58

    PubMed  CAS  Google Scholar 

  • Takahara K, Hoffman GG, Greenspan DS (1995) Complete structural organization of the human al(V) collagen gene (COL5A1): divergence from the conserved organization of other characterized fibrillar collagen genes. Genomics 29: 588–597

    PubMed  CAS  Google Scholar 

  • Thurmond FA, Trotter J A (1994) Native collagen fibrils from echinoderms are molecularly bipolar. J Mol Biol 235: 73–79

    PubMed  CAS  Google Scholar 

  • Tillet E, Franc JM, Franc S, Garrone R (1996) The evolution of fibrillar collagens: a sea-pen collagen shares common features with vertebrate type V collagen. Comp Biochem Physiol [B] 113: 239–246

    CAS  Google Scholar 

  • Tillet-Barret E, Franc JM, Franc S, Garrone R (1992) Characterization of heterotrimeric collagen molecules in a sea-pen ( Cnidaria, Octocorallia). Eur J Biochem 203: 179–184

    Google Scholar 

  • Timpl R (1996) Macromolecular organization of basement membranes. Curr Opin Cell Biol 8: 618–624

    PubMed  CAS  Google Scholar 

  • Trotter JA, Koob TJ (1989) Collagen and proteoglycan in a sea urchin ligament with mutable mechanical properties. Cell Tissue Res 258: 527–539

    PubMed  CAS  Google Scholar 

  • Trotter J A, Koob TJ (1994) Biochemical characterization of fibrillar collagen from the mutable spine ligament of the sea-urchin Eucidaris tribuloides. Comp Biochem Physiol [B] 107: 125–134

    Google Scholar 

  • Trotter J A, Thurmond FA, Koob TJ (1994) Molecular structure and functional morphology of echinoderm collagen fibrils. Cell Tissue Res 275: 451–458

    PubMed  CAS  Google Scholar 

  • Trotter JA, Lyons-Levy G, Thurmond FA, Koob TJ (1995) Covalent composition of collagen fibrils from the dermis of the sea cucumber, Cucumaria frondosa, a tissue with mutable mechanical properties. Comp Biochem Physiol [A] 112: 463–478

    Google Scholar 

  • Vaisanen T, Hagg P, Huhtala P, Rehn M, Pihlajaniemi T (1996) Type XIII collagen is a focal adhesion protein with possible adhesive function. Matrix Biol 15: 160

    Google Scholar 

  • Van der Eycken W, de Almeida Engler J, Van Montagu M, Gheysen G (1994) Identification and analysis of a cuticular collagen-encoding gene from the plant-parasitic nematode Meloidogyne incognita. Gene 151: 237–242

    Google Scholar 

  • Van der Rest M, Garrone R (1990) Collagen as multidomain proteins. Biochimie 72: 473–484

    PubMed  Google Scholar 

  • Van der Rest M, Garrone R (1991) The collagen family of proteins. FASEB J 5: 2814–2823

    PubMed  Google Scholar 

  • Van der Rest M, Garrone R, Herbage D (1993) Collagen: a family of proteins with many facets. Adv Mol Cell Biol 6: 1–67

    Google Scholar 

  • Vitellaro-Zuccarello L, Cheli F, Cetta G (1985) The interstitial collagen of Lumbricus sp. (Annelida). In: Bairati A, Garrone R (eds) Biology of invertebrate and lower vertebrate collagens. Plenum Press, New York, pp 259–265

    Google Scholar 

  • Vuoristo MM, Pihlajamaa T, Vandenberg P, Prockop DJ, Ala-Kokko L (1995) The human C0L11A2 gene structure indicates that the gene has not evolved with the genes for the major fibrillar collagens. J Biol Chem 270: 22873–22881

    CAS  Google Scholar 

  • Wallis GA (1993) Here today, bone tomorrow. Curr Biol 3: 687–689

    PubMed  CAS  Google Scholar 

  • Weber C, Schmid V (1985) The fibrous system in the extracellular matrix of hydromedusae. Tissue Cell 17: 811–822

    PubMed  CAS  Google Scholar 

  • Yasothornsrikul S, Wendy DJ, Cramer G, Kimbrell DA, Dearolf CR (1997) Viking: identification and characterization of a novel type IV collagen in Drosophila. Gene 198: 17–25

    PubMed  CAS  Google Scholar 

  • Zweckstetter M, Czisch M, Mayer U, Chu ML, Zinth W, Timpl R, Holak TA (1996) Structure and multiple conformations of the Kunitz-type domain from human type VI collagen a3(VI) chains in solution. Structure 4: 195–209

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Garrone, R. (1998). Evolution of Metazoan Collagens. In: Müller, W.E.G. (eds) Molecular Evolution: Towards the Origin of Metazoa. Progress in Molecular and Subcellular Biology, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72236-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72236-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72238-7

  • Online ISBN: 978-3-642-72236-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics