Skip to main content

The Notion of the Cambrian Pananimalia Genome and a Genomic Difference that Separated Vertebrates from Invertebrates

  • Chapter
Molecular Evolution: Towards the Origin of Metazoa

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 21))

Abstract

When our knowledge of early Cambrian fossils was almost entirely derived from the Burgess fauna in British Colombia, Canada, the so-called Cambrian explosion that started roughly 540 million years ago appeared to have been a rather slow detonation lasting 20 to 30 million years (Conway Morris 1989). The subsequent discovery of other early Cambrian faunas such as the Chenjiang fauna in Yunnan province, China, forced us to reevaluate the above noted initial estimate. It now appears that the Cambrian explosion was indeed a literal explosion, ancestral forms belonging to nearly all the extant animal phyla came into being within the short period of 6 to 10 million years (Gould 1995). In the case of the phylum Chordata, to which our own species belongs, its three tiers, namely Urochordata, Cephalochordata and Vertebrata, too appear to have emerged almost simultaneously within this short duration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Attardi G (1988) Biogenesis of mitochondria. Annu Rev Cell Biol 4: 289–333

    Article  PubMed  CAS  Google Scholar 

  • Bui ETN, Bradley PJ, Johnson P (1996) A common evolutionary origin for mitochondria and hydrogenosomes. Proc Natl Acad Sci USA 93: 9651–9656

    Article  PubMed  CAS  Google Scholar 

  • Carroll SB (1995) Homeotic genes and the evolution of arthropods and chordates. Nature 376: 479–485

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1987) The simultaneous symbiotic origin of mitochondria, chloroplasts and microbodies. Ann N York Acad Sci 503: 55–71

    Article  CAS  Google Scholar 

  • Chang S (1994) The planetary setting of prebiotic evolution. In: Bengston S (ed) Early life on earth. Nobel symposium no 84. Columbia University Press, New York

    Google Scholar 

  • Chen J-Y, Dzik J, Edgecomb GD, Ramskold L, Zhou G-Q (1995) A possible early Cambrian chordate. Nature 377: 720–722

    Article  CAS  Google Scholar 

  • Cloud P, Glaesner MF (1982) The Ediacaran period and system: Metazoa inherit the earth. Science 218: 783–792

    Google Scholar 

  • Collura RV, Stewart C-V (1995) Insertions and duplications of mtDNA in the nuclear genomes of old world monkeys and hominoids. Nature 378: 485–489

    Article  PubMed  CAS  Google Scholar 

  • Condie BG, Capecchi MR (1994) Mice with targeted disruptions in the paralogous genes HOXa3 and HOXd-3 revealed synergistic interactions. Nature 370: 304–307

    Article  PubMed  CAS  Google Scholar 

  • Conway Morris S (1989) Burgess shale faunas and the Cambrian explosion. Science 246: 339–346

    Article  PubMed  CAS  Google Scholar 

  • Davis AP, Witte DP, Hsieh-Li HM, Patter SS, Capecchi M (1995) Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature 375: 791–795

    Article  PubMed  CAS  Google Scholar 

  • De Duve C (1991) Blueprint for a cell: the nature and origin of life. Carolina Biological Supply, Burlington

    Google Scholar 

  • Degens ET, Kempe S, Spitzy A (1984) CO2: a biogeochemical portrait. In: Huntzinger O (ed) Handbook of environmental chemistry. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Escriva H, Safi R, Hanni C, Langlois M-C, Saumitou-Laprade P, Stehelin D, Capron A, Pierce R, Laudet V (1997) Ligand binding was acquired during evolution of nuclear receptors. Proc Natl Acad Sci USA 94: 6803–6808

    Article  PubMed  CAS  Google Scholar 

  • Gabbot SE, Aldridge RJ, Theron JM (1995) A giant conodont with preserved muscles from the upper Ordovician of South Africa. Nature 374: 800–803

    Article  Google Scholar 

  • Gould SJ (1995) Of it and not above it. Nature 377: 681–682

    Article  CAS  Google Scholar 

  • Hashimoto K, Hirai M, Kurosawa Y (1995) A gene outside the human MHC related to classical HLA class I genes. Science 269: 693–695

    Article  PubMed  CAS  Google Scholar 

  • Holland PWH, Garcia-Fernandez J, Williams NA, Sidow A (1994) Gene duplication and the origins of vertebrate development. Development Suppl [no volume and gene organization of sea urchin mitochondrial DNA. J Mol Biol 202:185–217

    Google Scholar 

  • Jacobs HT, Elliott DJ, Math VB, Farquharson A (1988) Nucleotide sequence and gene organization of sea urchin mitochondrial DNA. J Mol Biol 202: 185–217

    Article  PubMed  CAS  Google Scholar 

  • Kasahara M, Hayashi M, Tanaka K, Inoko H, Sugaya K, Ikemura T, Ishibashi T (1996) Chromosomal localization of the proteasome Z subunit gene reveals an ancient chromosomal duplication involving the major histocompatibility complex. Proc Natl Acad Sci USA 93: 9096–9101

    Article  PubMed  CAS  Google Scholar 

  • Kasahara M, Nakata J, Sattay, Takahata N (1997) Chromosomal duplication and the emergence of the adaptive immune system. Trends Genet 13: 90–92

    Article  PubMed  CAS  Google Scholar 

  • Katsanis N, Fitzgibbon J, Fisher EMC (1996) Paralogy mapping: identification of a region in the human MHC triplicated onto human chromosomes 1 and 9 allows the prediction and isolation of novel PBX and NOTCH loci. Genomics 35: 101–108

    Article  PubMed  CAS  Google Scholar 

  • Kempe S, Degens ET (1985) An early soda water ocean? Chem Geol 53: 95–104

    Article  CAS  Google Scholar 

  • Lavorga G, Ueda H, Clos J, Wu C (1991) FTZ-F1, a steroid hormone receptor-like protein implicated in the activation of fushitarazu. Science 252: 848–851

    Article  Google Scholar 

  • Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276: 567–570

    Google Scholar 

  • Loosli F, Kmita-Cunisse M, Gehring W (1996) Isolation of a Pax-6 homolog from the ribbon worm Lineus sanguineus expressed in eyes. Proc Natl Acad Sci USA 93: 2658–2663

    Article  PubMed  CAS  Google Scholar 

  • Lundin LG (1993) Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. Genomics 16: 1–19

    Article  PubMed  CAS  Google Scholar 

  • Luo X, Ikeda Y, Parker KL (1994) A cell specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77: 481–490

    Article  PubMed  CAS  Google Scholar 

  • Matsuo T, Osumi-Yamashita N, Noji S, Ohuchi H, Koyama E, Myokai F, Matsuo N, Taniguchi S, Doi H, Iseki S, Ninomiya, Y, Fujiwara M, Watanabe T, Eto K (1993) A mutation in the Pax-6 gene in rat small eye is associated with impaired migration of midbrain crest cells. Nature [Genet] 3: 299–304

    Article  CAS  Google Scholar 

  • McGinnis N, Kuziora MA, McGinnis W (1990) Human Hox4-2 and Drosophila deformed encode similar regulatory specificities in Drosophila embryos and larvae. Cell 63: 969–979

    Article  PubMed  CAS  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ohno S (1972) So much junk DNA in our genome. In: Smith HH (ed) Evolution of genetic systems. Brookhaven symposium no 26. Gordon and Breach, New York

    Google Scholar 

  • Ohno S (1996) The notion of the Cambrian pananimalia genome. Proc Natl Acad Sci USA 93: 8475–8478

    Article  PubMed  CAS  Google Scholar 

  • Schopf JW (1993) Microfossils of the early archean apex chert: new evidence of the antiquity of life. Science 260: 640–646

    Article  PubMed  CAS  Google Scholar 

  • Smith LC, Chang L, Britten RJ, Davidson EH (1996) Sea urchin genes expressed in activated coelomocytes identified by expressed sequence tags. J Immunol 156: 593–602

    PubMed  CAS  Google Scholar 

  • Spring J (1997) Vertebrate evolution by interspecific hybridization - are we polyploid? FEBS Lett 400: 2–8

    Article  PubMed  CAS  Google Scholar 

  • Sugaya K, Fukagawa T, Matsumoto K-I, Mita K, Takahashi E-I, Ando A, Inoko H, Ikemura T (1994) Three genes in the human MHC class III region near junction with the class II: gene for recetor of advanced glycosylation end products, PBX2 homeobox gene and a Notch homolog, human counterpart of mouse mammary tumor gene int-3. Genomics 23: 408–419

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Rodin A, Zhou Y, Dickinson H, Harpe DE, Hewett Emmett D, Li WH (1997) Evolution of paired domains: isolation and sequencing of jellyfish and hydra Pax genes related to Pax5 and Pax6. Proc Natl Acad Sci USA 94: 5156–5161

    Article  PubMed  CAS  Google Scholar 

  • Urbanek P, Fetka I, Meisler H, Busslinger M (1997) Cooperation of Pax2, Pax5 in midbrain and cerebellum development. Proc Natl Acad Sci USA 94: 5703–5708

    Article  PubMed  CAS  Google Scholar 

  • Van Verseveld HW, Bosma G (1987) The respiratory chain and energy conservation in the mitochondrion-like bacterium Paracoccus denitrificans. Microbiol Sci 4: 329–333

    PubMed  Google Scholar 

  • Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387: 708–713

    Article  PubMed  CAS  Google Scholar 

  • Wolstenholme DR, MacFarlane JL, Okimoto R, Clary DO, Wahleithner JA (1987) Bizzare tRNAs inferred from DNA sequences of mitochondrial genome of nematode worms. Proc Natl Acad Sci USA 84: 1324–1328

    Article  PubMed  CAS  Google Scholar 

  • Zischler H, Geisert H, von Haeseler A, Paabo S (1995) A nuclear “fossil” of the mitochondrial D- loop and the origin of modern humans. Nature 378: 489–492

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ohno, S. (1998). The Notion of the Cambrian Pananimalia Genome and a Genomic Difference that Separated Vertebrates from Invertebrates. In: Müller, W.E.G. (eds) Molecular Evolution: Towards the Origin of Metazoa. Progress in Molecular and Subcellular Biology, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72236-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72236-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72238-7

  • Online ISBN: 978-3-642-72236-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics