Origin and Phylogeny of Metazoans as Reconstructed with rDNA Sequences

  • J. W. Wägele
  • F. Rödding
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 21)

Abstract

Today, students of zoology will find a large number of incompatible dendrograms of the major groups of metazoans in textbooks and articles (examples in Figs. 1 and 2) inferred from rDNA alignments. Discrepancies existed before molecular data were used: a long debate, for example, was the discussion on the monophyly of arthropods. S. Manton (1902–1979) advocated her hypotheses of polyphyly of arthropods on the basis of excellent morphological studies (e.g. Manton 1969, 1973) and it took many years of research, partly with new methods (e.g. Wheeler et al. 1993), until the majority of the scientific community accepted what was already well-founded decades before (e.g. Snodgrass 1950), namely that arthropods are with high probability monophyletic. The major source of uncertainty in comparative morphology is the lack of scientific concepts that allow a quantitative estimation of the quality (= information content) of characters and data sets. Only recently has the first author proposed that the terms “information content” and “data quality” are related to the probability of homology of the characters (Wägele 1996b).

Keywords

Approach Accord Sponge Bors Bivalvia Reso 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abele LG, Kim W, Felgenhauer BE (1989) Molecular evidence for inclusion of the phylum Pentastomida in the Crustacea. Mol Biol Evol 6: 685–691Google Scholar
  2. Adoutte A, Philippe H (1993) The major lines of metazoan evolution: summary of traditional evidence and lessons from ribosomal RNA sequence analysis. In: Pichon Y (ed) Comparative molecular neurobiology. Birkhäuser, Basel, pp 1–30Google Scholar
  3. Ahlrichs WH (1995) Ultrastruktur und Phylogenie von Seison nebaliae (Grube 1859) und Seison annulatus (Claus 1876 ) Hypothesen zu phylogenetischen Verwandtschaftsverhältnissen innerhalb der Bilateria. Cuvillier, GöttingenGoogle Scholar
  4. Ahlrichs WH (1997) Epidermal ultrastructure of Seison nebaliae and Seison annulatus, and a comparison of epidermal structures within the Gnathifera. Zoomorphology 117: 41–48Google Scholar
  5. Ax P (1995) Das System der Metazoa I. Fischer, StuttgartGoogle Scholar
  6. Ballard J WO, Olsen GJ, Faith DP, Odgers WA, Rowell DM, Atkinson PW (1992) Evidence from 12S ribosomal RNA sequences that onychophorans are modified arthropods. Science 258: 1345–1348PubMedGoogle Scholar
  7. Bartolomaeus T (1994) Ultrastruktur und Entwicklung der Uncini und deren Bedeutung für die Systematik der Anneliden. Verh Dtsch Zool Ges 87: 215Google Scholar
  8. Bartolomaeus T (1995) Structure and formation of the uncini in Pectinaria koreni, Pectinaria auricoma (Terebellida) and Spirorbis spirorbis (Sabellida): implications for annelid phylogeny and the position of the Pogonophora. Zoomorphology 115: 161–177Google Scholar
  9. Baverstock PR, Fielke R, Johnson AM, Bray RA, Beveridge I (1991) Conflicting phylogenetic hypotheses for the parasitic platyhelminths tested by partial sequencing of 18S ribosomal RNA. Int J Parasitol 21: 329–339PubMedGoogle Scholar
  10. Boore JL, Brown WM (1994) Mitochondrial genomes and the phylogeny of molluscs. Nautilus Suppl 2: 61–78Google Scholar
  11. Boore JL, Collins TM, Stanton D, Daehler LL, Brown WM (1995) Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature 376: 163–165PubMedGoogle Scholar
  12. Brown DD, Wensink PC, Jordan E (1972) A comparison of the ribosomal DNAs of Xenopus laevis and Xenopus mulleri: evolution of tandem genes. J Mol Biol 63: 57–73PubMedGoogle Scholar
  13. Brown WM, George M, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76: 1967–1971PubMedGoogle Scholar
  14. Brusca RC, Brusca GJ (1990) Invertebrates. Sinauer, Sunderland, MAGoogle Scholar
  15. Carmean D, Kimsey LS, Berbee ML (1992) 18S rDNA sequences and the holometabolous insects. Mol Phylog Evol 1:270–278Google Scholar
  16. Cavalier-Smith T, Allsopp MTEP, Chao EE, Boury-Esnault N, Vacelet J (1996) Sponge phylogeny, animal monophyly, and the origin of the nervous system: 18S rRNA evidence. Can J Zool 74: 2031–2045Google Scholar
  17. Charleston MA, Page M (1997) Spectrum. Computer program for spectral analysis, available at http://taxonomy.zoology.gla.ac.uk/~mac/spectrum/spectrum.htmlGoogle Scholar
  18. Christen R, Ratto A, Baroin A, Perasso R, Grell KG, Adoutte A (1991) An analysis of the origin of metazoans, using comparisons of partial sequences of the 28S RNA, reveals an early emergence of triploblasts. EMBO J 10: 499–503PubMedGoogle Scholar
  19. Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol 22: 252–271PubMedGoogle Scholar
  20. Coen ES, Thoday JM, Dover G (1982) Rate of turnover of structural variants in the rDNA gene family of Drosophila melanogaster. Nature 295: 564–568PubMedGoogle Scholar
  21. Crease TJ (1993) Sequence of the intergenic spacer between the 28S and 18S rRNA-encoding genes of the crustacean, Daphnia pulex. Gene 134: 245–249PubMedGoogle Scholar
  22. Crease TJ (1995) Ribosomal DNA evolution at the population level: nucleotide variation in intergenic spacer arrays of Daphnia pulex. Genetics 141: 1327–1337PubMedGoogle Scholar
  23. Darling KF, Kroon D, Wade CM, Brown AJL (1996) Molecular phylogeny of the planktic Foraminifera. J Foraminiferal Res 26: 324–330Google Scholar
  24. Darling KF, Wade CM, Kroon D, Brown AJL (1997) Planktic foraminiferal moleuclar evolution and their polyphyletic origins from benthic taxa. Mar Micropaleontol 30: 251–266Google Scholar
  25. De Rijk P, Van de Peer Y, Van den Broeck I, De Wachter R (1995) Evolution according to large ribosomal subunit RNA. J Mol Evol 41: 366–375Google Scholar
  26. De Rijk P, Van de Peer Y, De Wachter R (1996) Database on the structure of large ribosomal subunit RNA. Nucleic Acids Res 24: 92–97Google Scholar
  27. Degnan BM, Yan J, Hawkins CJ, Lavin MF (1990) rRNA genes from the lower chordate Herdmania momus: structural similarity with higher eukaryotes. Nucleic Acids Res 18:7063–7070PubMedGoogle Scholar
  28. Derr JN, Davis SK, Woolley JB, Wharton RA (1992) Variation and the phylogenetic utility of the large ribosomal subunit of mitochondrial DNA from the insect order Hymenoptera. Mol Phylogen Evol 1: 136–147Google Scholar
  29. DeSalle R (1992) The phylogenetic relationships of flies in the family Drosophilidae deduced from mtDNA sequences. Mol Phylog Evol 1: 31–40Google Scholar
  30. DeSalle R, Freedman T, Prager EM, Wilson AC (1987) Tempo and mode of sequence evolution in mitochondrial DNA of Hawaiian Drosophila. J Mol Evol 26: 157–164PubMedGoogle Scholar
  31. Drouin G, Moniz de Sá M (1995) The concerted evolution of 5S ribosomal genes linked to the repeat units of other multigene families. Mol Biol Evol 12: 481–493Google Scholar
  32. Drouin G, Sévigny JM, McLaren IA, Hofman JD, Doolittle WF (1992) Variable arrangements of 5S ribosomal genes within the ribosomal DNA repeats of arthropods. Mol Biol Evol 9: 826–835PubMedGoogle Scholar
  33. Ehlers U (1985) Das phylogenetische System der Plathelminthes. Fischer, StuttgartGoogle Scholar
  34. Elder JF, Turner BJ (1995) Concerted evolution of repetitive DNA sequences in eukaryotes. Q Rev Biol 70: 297–320PubMedGoogle Scholar
  35. Field KG, Olsen GJ, Lane DJ (1988) Molecular phylogeny of the animal kingdom. Science 239: 748–752PubMedGoogle Scholar
  36. Fox RC, Meng J (1997) An X-radiographic and SEM study of the osseous inner ear of multituberculates and monotremes (Mammalia): implications for mammalian phylogeny and evolution of hearing. Zool J Linn Soc 121: 249–291Google Scholar
  37. Friedrich M, Tautz D (1995) Ribosomal DNA phylogeny of the major extant classes and the evolution of myriapods. Nature 376: 165–167PubMedGoogle Scholar
  38. Garey JR, Near TJ, Nonnemacher MR, Nadler SA (1996) Molecular evidence for Acanthocephala as a subtaxon of Rotifera. J Mol Evol 43: 287–292PubMedGoogle Scholar
  39. Ghiselin MT (1988) The origin of molluscs in the light of molecular evidence. Oxford Surv Evol Biol 5: 66–95Google Scholar
  40. Ghiselin MT (1989) Summary of our present knowledge of metazoan phylogeny. In: Fernholm B, Bremer K, Jörnwall H (eds) The hierarchy of life. Excerpta Medica, Amsterdam, pp 261–272Google Scholar
  41. Giribet G, Garranza S, Baguña J, Riutort M, Ribera C (1996) First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Mol Biol Evol 13: 76–84PubMedGoogle Scholar
  42. Halanych KM (1991) 5S ribosomal RNA sequences inappropriate for phylogenetic reconstruction. Mol Biol Evol 8:249–253Google Scholar
  43. Halanych KM (1996) Testing hypotheses of chaetognath origins: long branches revealed by 18S ribosomal DNA. Syst Biol 45: 223–246Google Scholar
  44. Halanych KM, Bacheller JD, Aguinaldo AMA, Liva SM, Hillis DM, Lake JA (1995) Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science 267: 1641–1643PubMedGoogle Scholar
  45. Hanelt B, Van Schyndel D, Adema CM, Lewis LA, Loker ES (1996) The phylogenetic position of Rhopalura ophiocomae (Orthonectida) based on 18S ribosomal sequence analysis. Mol Biol Evol 13: 1187–1191PubMedGoogle Scholar
  46. Hedges SB (1994) Molecular evidence for the origin of birds. Proc Natl Acad Sci USA 91: 2621–2624PubMedGoogle Scholar
  47. Hedges SB, Moberg KD, Maxson LR (1990) Tetrapod phylogeny inferred from 18S and 28S ribosomal RNA sequences and a review of the evidence for amniote relationships. Mol Biol Evol 7: 607–633PubMedGoogle Scholar
  48. Hendriks L, Huysmans E, Vandenberghe A, De Wächter R (1986) Primary structures of the 5S ribosomal RNAs of 11 arthropods and applicability of 5S RNA to the study of metazoan evolution. J Mol Evol 24: 103–109Google Scholar
  49. Hendriks L, De Baere R, Van Broeckhoven C, De Wächter R (1988) Primary and secondary structure of the 18S ribosomal RNA of the insect species Tenebrio molitor. FEBs Lett 232: 115–120PubMedGoogle Scholar
  50. Hendy MD, Penny D (1993) Spectral analysis of phylogenetic data. J Classif 10: 5–24Google Scholar
  51. Hillis DM, Davis SK (1986) Evolution of ribosomal DNA: fifty million years of recorded history in the frog genus Rana. Evolution 40: 1275–1288Google Scholar
  52. Hillis DM, Davis SK (1988) Ribosomal DNA: intraspecific polymorphism, concerted evolution, and phylogeny reconstruction. Syst Zool 37: 63–66Google Scholar
  53. Holland PWH, Hacker AM, Williams NA (1991) A molecular analysis of the phylogenetic affinities of Saccoglossus cambrensis Brambell & Cole ( Hemichordata ). Philos Trans R Soc Lond [Biol] 332: 185–189Google Scholar
  54. Janke A, Gemmell NJ, Feldmaier-Fuchs G, von Haeseler A, Pääbo S (1996) The mitochondrial genome of a monotreme — the platypus ( Ornithorhynchus anatinus ). J Mol Evol 42: 153–159Google Scholar
  55. Katayama T, Wada H, Furuya H, Satoh N, Yamamoto M (1995) Phylogenetic position of the dicyemid Mesozoa inferred from 18S rDNA sequences. Biol Bull 189: 81–90PubMedGoogle Scholar
  56. Katayama T, Nishioka M, Yamamoto M (1996) Phylogenetic relationships among turbellarian orders inferred from 18S rDNA sequences. Zool Sci 13: 747–756PubMedGoogle Scholar
  57. Kim CB, Moon SY, Gelder SR, Kim W (1996) Phylogenetic relationship of annelids, molluscs, and arthropods evidenced from molecules and morphology. Mol Evol 43: 207–215Google Scholar
  58. Kobayashi M, Takahashi M, Wada H, Satoh N (1993) Molecular phylogeny inferred from sequences of small subunit ribosomal DNA, supports the monophyly of the Metazoa. Zool Sci 10: 827–833PubMedGoogle Scholar
  59. Kwon O, Ogino K, Ishikawa H (1991) The longest 18S ribosomal RNA ever known. Eur J Biochem 202: 827–833PubMedGoogle Scholar
  60. Lake JA (1987) A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol 4: 167–191PubMedGoogle Scholar
  61. Lake JA (1990) Origin of the Metazoa. Proc Natl Acad Sci USA 87: 763–766PubMedGoogle Scholar
  62. Larsen N, Olsen GJ, Maidak BL, McCaughey MJ, Overbeek R, Macke TJ, Marsh TL, Woese C (1993) The ribosomal database project. Nucleic Acids Res 21: 3021–3023PubMedGoogle Scholar
  63. Lé HLV, Lecointre G, Perasso R (1993) A 28S rRNA-based phylogeny of the gnathostomes: first steps in the analysis of conflict and congruence with morphologically based cladograms. Mol Phylog Evol 2: 31–51Google Scholar
  64. Lecointre G (1996) Methodological aspects of molecular phylogeny of fishes. Zool Stud 35: 161–177Google Scholar
  65. Lecointre G, Philippe H, Le HLV, Le Guyader H (1993) Species sampling has a major impact on phylogenetic inference. Mol Phylog Evol 2: 205–224Google Scholar
  66. Lecointre G, Philippe H, Van Le HL, Le Guyader H (1994) How many nucleotides are required to resolve a phylogenetic problem? The use of a new statistical method applicable to available sequences. Mol Phylog Evol 3: 292–309Google Scholar
  67. Lee WJ, Kocher TD (1995) Complete sequence of a sea lamprey (Petromyzon marinus) mitochondrial genome: early establishment of the vertebrate genome organization. Genetics 139: 873–887PubMedGoogle Scholar
  68. Lento GM, Hickson RE, Chambers GK, Penny D (1995) Use of spectral analysis to test hypotheses on the origin of pinnipeds. Mol Biol Evol 12: 28–52PubMedGoogle Scholar
  69. Luckett WP, Zeller U (1989) Developmental evidence for dental homologies in the monotreme Ornithorhynchus and its systematic implications. Z Sāugetierk 54: 193–204Google Scholar
  70. Mackey LY, Winnepenninckx B, De Wachter R, Backeljau T, Emschermann P, Garey JR (1996) 18S rRNA suggests that Entoprocta are protostomes, unrelated to Ectoprocta. J Mol Evol 42:552–559PubMedGoogle Scholar
  71. Maidak BL, Olsen GJ, Larsen N, Overbeek R, McCoughey MJ, Woese CR (1996) The ribosomal database project ( RDP ). Nucleic Acids Res 24: 82–85Google Scholar
  72. Manton SM (1969) Evolution and affinities of Onychophora, Myriapoda, Hexapoda, and Crustacea. In: Moore RC (ed) Treatise on invertebrate paleontology, part R: Arthropoda, vol 4. Geological Society of America University of Kansas, pp R15–R57Google Scholar
  73. Manton SM (1973) Arthropod phylogeny - a modern synthesis. J Zool Lond 171: 111–130Google Scholar
  74. Marshall CR (1992) Substitution bias, weighted parsimony, and amniote phylogeny as inferred from 18S rRNA sequences. Mol Biol Evol 9: 370–373PubMedGoogle Scholar
  75. Michot B, Qu LH, Bachellerie JP (1990) Evolution of large-subunit rRNA structure. Eur J Biochem 188: 219–229PubMedGoogle Scholar
  76. Moon SY, Kim W (1996) Phylogenetic position of the Tardigrada based on the 18S ribosomal RNA gene sequences. Zool J Linn Soc 116: 61–69Google Scholar
  77. Neuhaus B (1994) Ultrastructure of alimentary canal and body cavity, ground pattern, and phylogenetic relationship of the Kinorhyncha. Microfauna Mar 9: 61–157Google Scholar
  78. Nunn GB, Theisen BF, Christensen B, Arctander P (1996) Simplicity-correlated size growth of the nuclear 28S ribosomal RNA D3 expansion segment in the crustacean order Isopoda. J Mol Evol 42: 211–223PubMedGoogle Scholar
  79. Odorico DM, Miller DJ (1997) Internal and external relationships of the Cnidaria: implications of primary and predicted secondary structure of the 5′-end of the 23S-like rDNA. Proc R Soc Lond [Biol] 264: 77–82Google Scholar
  80. Ortí G, Petry P, Porto JIR, Jegú M, Meyer A (1996) Patterns of nucleotide change in mitochondrial ribosomal RNA genes and the phylogeny of piranhas. J Mol Evol 42: 169–182PubMedGoogle Scholar
  81. Pashley DP, McPheron BA, Zimmer EA (1993) Systematics of holometabolous insect orders based on 18S ribosomal RNA. Mol Phylog Evol 2: 132–142Google Scholar
  82. Pawlowski J, Montoya-Burgos JI, Fahrni JF, Wüest J, Zaninetti L (1996) Origin of the Mesozoa inferred from 18S rRNA gene sequences. Mol Biol Evol 13: 1128–1132PubMedGoogle Scholar
  83. Philippe H, Chenuil A, Adoutte A (1994) Can the Cambria explosion be inferred through molecular phylogeny? Development (Suppl): 15–25Google Scholar
  84. Schäfer M, Kunz W (1985) rDNA in Locusta migratoria is very variable: two introns and extensive restriction site polymorphisms in the spacer. Nature 13:1251–522Google Scholar
  85. Schlötterer C, Hauser MT, von Haeseler A, Tautz D (1994) Comparative evolutionary analysis of rDNA ITS regions in Drosophila. Mol Biol Evol 11: 513–522PubMedGoogle Scholar
  86. Schram FR (1991) Cladistic analysis of metazoan phyla and the placement of fossil problematica. In: Simonetta AM, Morris SC (eds) The early evolution of Metazoa. Cambridge University Press, Cambridge pp 35–46Google Scholar
  87. Simon C, Pääbo S, Kocher T, Wilson AC (1990) Evolution of mitochondrial ribosomal RNA in insects as shown by the polymerase chain reaction In: Clegg M, O’Brien S (eds) Molecular evolution, vol 122. Liss, New York, pp 235–244Google Scholar
  88. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87: 651–701Google Scholar
  89. Smith AB (1992) Echinoderm phylogeny: morphology and molecules approach accord. Trends Ecol Evol 7: 224–229PubMedGoogle Scholar
  90. Smith AB, Lafay B, Christen R (1992) Comparative variation of morphological and molecular evidence through geologic time: 28S ribosomal RNA versus morphology in echinoids. Philos Trans R Soc Lond [Biol] 338: 365–382Google Scholar
  91. Smith MJ, Banfield DK, Doteval K, Gorski S, Kowbel DJ (1989) Gene arrangement in sea star mitochondrial DNA demonstrates a major inversion event during echinoderm evolution. Gene 76: 181–185PubMedGoogle Scholar
  92. Smothers JF, von Dohlen CD, Smith LH, Spall RD (1994) Molecular evidence that the myxozoan protists are metazoans. Science 265: 1719–1721PubMedGoogle Scholar
  93. Snodgrass RE (1950) Comparative studies on the jaws of mandibulate arthropods. Smithson Mise Collect 116: 1–85Google Scholar
  94. Spears T, Abele LG, Applegate MA (1994) Phylogenetic study of cirripedes and selected relatives (Thecostraca) based on 18S rDNA sequence analysis. J Crust Biol 14: 641–656Google Scholar
  95. Swofford DL, Olsen GJ (1990) Phylogeny reconstruction. In: Hillis DM, Moritz C (eds) Molecular systematics. Sinauer, Sunderland, pp 411–501Google Scholar
  96. Tang J, Toè L, Back C, Unnasch TR (1996) Intra-specific heterogeneity of the rDNA internal transcribed spacer in the Simulium damnosum ( Diptera: Simuliidae) complex. Mol Biol Evol 13: 244–252Google Scholar
  97. Terrett J, Miles S, Thomas RH (1994) The mitochondrial genome of Cepaea nemoralis (Gastropoda: Stylommatophora): gene order, base composition, and heteroplasmy. Nautilus Suppl 2: 79–84Google Scholar
  98. Thenius E (1979) Die Evolution der Säugetiere. UTB, StuttgartGoogle Scholar
  99. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680PubMedGoogle Scholar
  100. Turbeville JM, Field KG (1992) Phylogenetic position of phylum Nemertini, inferred from 18S rRNA sequences: molecular data as a test of morphological character homology. Mol Biol Evol 9: 235–249PubMedGoogle Scholar
  101. Turbeville JM, Schulz JR, Raff RA (1994) Deuterostome phylogeny and the sister group of chordates: evidence from molecules and morphology. Mol Biol Evol 11: 648–655PubMedGoogle Scholar
  102. Vahidi H, Honda BM (1991) Repeats and subrepeats in the intergenic spacer of rDNA from the nematode Meloidogyne arenaria. Mol Gen Genet 227: 334–336PubMedGoogle Scholar
  103. Van de Peer Y, Neefs JM, De Rijk P, De Wächter R (1993) Reconstructing evolution from eucaryotic small-ribosomal-subunit RNA sequences: calibration of the molecular clock. J Mol Evol 37: 221–232PubMedGoogle Scholar
  104. Van de Peer Y, Nicolai S, De Rijk P, De Wächter R (1996) Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res 24: 86–91PubMedGoogle Scholar
  105. Vawter L, Brown WM (1986) Nuclear and mitochondria DNA comparisons reveal extreme rate variation in the molecular clock. Science 234: 194–196PubMedGoogle Scholar
  106. Vogler AP, DeSalle R (1994) Evolution and phylogenetic information content of the ITS-1 region in the tiger beetle Cicindela dorsalis. Mol Biol Evol 11: 393–405PubMedGoogle Scholar
  107. Wada H, Satoh N (1994) Phylogenetic relationships among extant classes of echinoderms, as inferred from sequences of 18S rDNA, coincide with relationships deduced from the fossil record. J Mol Evol 38: 41–49PubMedGoogle Scholar
  108. Wägele JW (1993) Rejection of the “Uniramia” hypothesis and implications of the Mandibulata concept. Zool Jb Syst 120: 253–288Google Scholar
  109. Wägele JW (1994) Review of methodological problems of “computer cladistics” exemplified with a case study on isopod phylogeny (Crustacea: Isopoda). Z Zool Syst Evol Forsch 32: 81–107Google Scholar
  110. Wägele JW (1996a) Identification of apomorphies and the role of groundpatterns in molecular systematics. J Zool Syst Evol Res 34: 31–39Google Scholar
  111. Wägele JW (1996b) First principles of phylogenetic systematics, a basis for numerical methods used for morphological and molecular characters. Vie Milieu 46: 125–138Google Scholar
  112. Wägele JW, Rodding T (1998) Estimation of conserved phylogenetic information content of alignments and of probability of homology. Mol Phylog Evol (in press)Google Scholar
  113. Wägele JW, Stanjek G (1995) Arthropod phylogeny inferred from partial 12S rRNA revisited: monophyly of the Tracheata depends on sequence alignment. J Zool Syst Evol Res 33: 75–80Google Scholar
  114. Wägele JW, Wetzel R (1994) Nucleic acid sequence data are not per se reliable for inference of phylogenies. J Nat Hist 28: 749–761Google Scholar
  115. Wainright PO, Hinkle G, Sogin ML, Stickel SK (1993) Monophyletic origins of the Metazoa: an evolutionary link with fungi. Science 260: 340–342PubMedGoogle Scholar
  116. Wesson DM, Porter CH, Collins FH (1992) Sequence and secondary structure comparisons of ITS rDNA in mosquitoes ( Diptera: Culicidae). Mol Phylog Evol 1: 253–269Google Scholar
  117. West L, Powers D (1993) Molecular phylogenetic position of hexactinellid sponges in relation to the Protista and Demospongiae. Mol Mar Biol Biotechnol 2: 71–75PubMedGoogle Scholar
  118. Wheeler WC, Cartwright P, Hayashi CY (1993) Arthropod phylogeny: a combined approach. Cladistics 9: 1–39Google Scholar
  119. Winnepenninckx B, Backeljau T, Van de Peer Y, De Wachtler R (1992) Structure of the small ribosomal subunit RNA of the pulmonate snail, Limicolaria kambeul, and phylogenetic analysis of the Metazoa. FEBS Lett 309: 123–126Google Scholar
  120. Winnepenninckx B, Backeljau T, De Wachter R (1994) Small ribosomal subunit RNA and the phylogeny of Mollusca. Nautilus Suppl 2: 98–110Google Scholar
  121. Winnepenninckx B, Backeljau T, Mackey L, Brooks JM, De Wacher R, Kumar S, Garey JR (1995a) 18S rRNA data indicate that aschelminthes are polyphyletic in origin and consist of at least three distinct clades. Mol Biol Evol 12:1132–1137Google Scholar
  122. Winnepenninckx B, Backeljau T, De Wachter R (1995b) Phylogeny of protostome worms derived from 18S rRNA sequences. Mol Biol Evol 12: 641–649PubMedGoogle Scholar
  123. Winnepenninckx B, Backeljau T, De Wachter R (1996) Investigation of molluscan phylogeny on the basis of 18S rRNA sequences. Mol Biol Evol 13: 1306–1317PubMedGoogle Scholar
  124. Zardoya R, Meyer A (1996) The complete nucleotide sequence of the mitochondrial genome of the lungfish ( Protopterus dolloi) supports its phylogenetic position as a close relative of land vertebrates. Genetics 142: 1249–1263Google Scholar
  125. Zharkikh A, Li WH (1993) Inconsistency of the maximum-parsimony method: the case of five taxa with a molecular clock. Syst Biol 42: 113–125Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • J. W. Wägele
  • F. Rödding
    • 1
  1. 1.Fakultät für BiologieRuhr-Universität BochumBochumGermany

Personalised recommendations