Skip to main content

The Question of Metazoan Monophyly and the Fossil Record

  • Chapter

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 21))

Abstract

As metazoans, almost inevitably we have a chauvinistic interest in our origins. We must also acknowledge, however, that the acquisition of specialized tissues - notably muscles to enable macroscopic motility, and nerves to transmit information - have transformed the world. Nevertheless, matters in biology are seldom clear-cut and amongst the smaller metazoans there are distinct overlaps with some of the more complex protistans, perhaps most strikingly with the ciliates. This overlap is perhaps most familiar from the miniaturized representatives of the sandy meiofauna (e.g. Giere 1993), the curious and probably degenerate diphyletic mesozoans (e.g. Katayama et al. 1995; Hanelt et al. 1996; Pawlowski et al. 1996; cf Cavalier-Smith 1993, who regards mesozoans as multicellular protists), and the recently discovered Symbion (Funch and Kristensen 1995; Funch 1996). Moreover, the recent assignment of the endoparasitic myxozoans, long thought to be protistans (e.g. Cavalier-Smith 1993), to the Metazoa, albeit without agreement as to whether they belong within the Bilateria (Smothers et al. 1994; Schlegel et al. 1996; see also Hanelt et al. 1996 and Pawlowski et al. 1996) or Cnidaria (Siddall et al. 1995) is a timely reminder that the concept of this Kingdom is more protean than is popularly imagined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaronson J (1970) Molecular evidence for evolution in the algae: a possible affinity between plant cell walls and animal skeletons. Ann N Y Acad Sci 175: 531–540

    CAS  Google Scholar 

  • Adoutte A, Philippe H (1993) The major lines of metazoan evolution: summary of traditional evidence and lessons from ribosomal RNA sequence analysis. In: Pichon Y (ed) Comparative molecular neurobiology. Birkhäuser, Basel, pp 1–30

    Google Scholar 

  • Aerne BL, Baader CD, Schmid V (1995) Life stage and tissue-specific expression of the homeobox gene cnoxl-pc of the hydrozoan Podocoryne carnea. Dev Biol 169: 547–556

    PubMed  CAS  Google Scholar 

  • Allison CW, Hilgert JW (1986) Scale microfossils from the early Cambrian of northwest Canada. J Paleontol 60: 973–1015

    Google Scholar 

  • Anderson DT (1982) Origins and relationships among the animal phyla. Proc Linn Soc NSW 106: 151–166

    Google Scholar 

  • Ax P (1989) Basic phylogenetic systemization of the Metazoa. In: Fernholm B, Bremer K, Jörnvall H (eds) The hierarchy of life. Molecules and morphology in phylogenetic analysis. Excerpta Medica, Amsterdam, pp 229–245

    Google Scholar 

  • Backeljau T, Winnepenninckx B, de Bruyn L (1993) Cladistic analysis of metazoan relationships: a reappraisal. Cladistics 9: 167–181

    Google Scholar 

  • Balavoine G (1997) The early emergence of platyhelminthes is contradicted by the agreement between 18S rRNA and Hox genes data. C R Acad Sci III 320: 83–94

    CAS  Google Scholar 

  • Baldauf SL, Palmer JP (1993) Animal and fungi are each others closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci USA 90: 11558–11562

    PubMed  CAS  Google Scholar 

  • Bergquist PR (1985) Poriferan relationships. In: Conway Morris S, George JD, Gibson R, Piatt HM (eds) The origins and relationships of lower invertebrates. The Systematics Association, spec vol 28. Clarendon Press, Oxford, pp 14–27

    Google Scholar 

  • Bergström J (1990) Precambrian trace fossils and the rise of bilaterian animals. Ichnos 1: 3–13

    Google Scholar 

  • Berteaux-Lecellier V, Picard M, Thompson-Coffe C, Zickler D, Panvier-Adoutte A, Simonet J-M (1995) A nonmammalian homolog of the PAF 1 gene (Zellweger syndrome) discovered as a gene involved in caryogamy in the fungus Podospora anserina. Cell 81: 1043–1051

    PubMed  CAS  Google Scholar 

  • Bosch TCG, Benitez E, Gellner K, Praetzel G, Salgado LM (1995) Cloning of a ras-related gene from Hydra which responds to head-specific signals. Gene 167: 191–195

    PubMed  CAS  Google Scholar 

  • Buss L, Seilacher A (1994) The phylum Vendobionta: a sister group of the Eumetazoa Paleobiology 20: 1–4

    Google Scholar 

  • Butterfield NJ, Knoll AH, Swett K (1994) Paleobiology of the Neoproterozoic Svanbergfjellet formation, Spitsbergen. Fossils Strata 34: 1–84

    Google Scholar 

  • Cassaro CMF, Dietrich CP (1977) Distribution of sulphated mucopolysaccharides in invertebrates. J Biol Chem 252: 2254–2261

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1993) Kingdom Protozoa and its 18 phyla. Microbiol Rev 57: 953–994

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith R, Allsopp MTEP (1996) Corallochytrium, an enigmatic non-flagellate protozoan related to choanoflagellates. Eur J Protistol 32:306–310

    Google Scholar 

  • Cavalier-Smith R, Chao EE (1995) The opalozoan Apusomonas is related to the common ancestor of animals, fungi, and choanoflagellates. Proc R Soc Lond [Biol] 261: 1–6

    Google Scholar 

  • Celerin M, Ray JM, Schisler NJ, Day AW, Stetter-Stevenson WG, Laudenbach DE (1996) Fungal fimbriae are composed of collagen. EMBO J 15: 4445–4453

    PubMed  CAS  Google Scholar 

  • Christen R, Ratto A, Baroin A, Perasso R, Grell KG, Adoutte A (1991) An analysis of the origin of metazoans, using comparisons of partial sequences of the 28S RNA, reveals an early emergence of triploblasts EMBO J 10: 499–503

    CAS  Google Scholar 

  • Conway Morris S (1993a) The fossil record and the early evolution of the Metazoa. Nature 361: 219–225

    Google Scholar 

  • Conway Morris S (1993b) Ediacaran-like fossils in Cambrian Burgess Shale-type faunas of North America. Palaeontology 36: 593–635

    Google Scholar 

  • Conway Morris S (1994) Why molecular biology needs palaeontology. Development (Suppl) 1994: 1–13

    Google Scholar 

  • Conway Morris S (1995) Nailing the lophophorates Nature 375: 365–366

    Google Scholar 

  • Conway Morris S (1997) Molecular clocks: defusing the Cambrian “explosion”? Curr Biol 7: R71–R74

    Google Scholar 

  • Conway Morris S, Peel JS (1995) Articulated halkieriids from the Lower Cambrian of North Greenland and their role in early protostome evolution Philos Trans R Soc Lond [Biol] 347: 305–358

    Google Scholar 

  • Conway Morris S, Cohen BL, Gawthorp AB, Cavalier-Smith T, Winnepenninckx B (1996) Lophophorate phylogeny ( Technical comment ). Science 272: 282

    Google Scholar 

  • Corliss JO (1959) Comments on the systematics and phylogeny of the Protozoa. Syst Zool 8: 169–190

    Google Scholar 

  • Coutinho CC, Vissers S, Van de Vyver G (1994) Evidence of homeobox genes in the freshwater sponge Ephydatia fluviatilis. In: Van Soest RWM, Van Kempen TMG, Braekman JC (eds) Sponges in time and space. Biology, chemistry and palaeontology. Balkema, Rotterdam, pp 385–388

    Google Scholar 

  • Crimes TP (1994) The period of early evolutionary failure and the dawn of evolutionary success: the record of biotic changes across the Precambrian-Cambrian boundary. In: Donovan SK (ed) The paleobiology of trace fossils. Wiley, Chichester, pp 105–133

    Google Scholar 

  • Crimes TP, Fedonkin MA (1996) Biotic changes in platform communities across the Precambrian Phanerozoic boundary. Riv Ital Paleontol Stratigr 102: 317–332

    Google Scholar 

  • Cunningham CW, Jeng K, Husti J, Badgett M, Molineux I J, Hillis DM, Bull J J (1997) Parallel molecular evolution of deletions and nonsense mutations in bacteriophage T7. Mol Biol Evol 14: 113–116

    PubMed  CAS  Google Scholar 

  • Degnan BM, Degnan SM, Naganuma T, Morse DE (1993) The ets multigene family is conserved throughout the Metazoa. Nucleic Acids Res 21: 3479–3484

    PubMed  CAS  Google Scholar 

  • Degnan BM, Degnan SM, Giusti A, Morse DE (1995) A hox/hom homeobox in sponges. Gene 155: 175–177

    PubMed  CAS  Google Scholar 

  • Doolittle RF, Feng D-F, Tsang S, Cho G, Little E (1996) Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 271: 470–477

    PubMed  CAS  Google Scholar 

  • Durham JW (1978) The probable metazoan biota of the Precambrian as indicated by the subsequent record. Annu Rev Earth Planet Sci 6: 21–42

    Google Scholar 

  • Erwin DH (1993) The origin of metazoan development: a palaeobiological perspective. Biol J Linn Soc 50: 255–274

    Google Scholar 

  • Exposito JY, Garrone R (1990) Characterization of a fibrillar collagen gene in sponges reveals the early evolutionary appearance of two collagen gene families. Proc Natl Acad Sci USA 87: 6670–6673

    Google Scholar 

  • Fauré-Fremiet E (1954) Les problèmes de la différentiation chez les protistes. Bull Soc Zool Fr 79: 311–329

    Google Scholar 

  • Fauré-Fremiet E (1958) The origin of the Metazoa and the stigma of the phytoflagellates. Q J Microsc Sci 99: 123–129

    Google Scholar 

  • Field KG, Olsen GJ, Lane DJ, Giovannoni SJ, Ghiselin MT, Raff EC, Pace NR, Raff RA (1988) Molecular phylogeny of the animal kingdom. Science 239: 748–753

    PubMed  CAS  Google Scholar 

  • Field KG, Olsen GJ, Giovannoni SJ, Raff EC, Pace NR, Raff RA (1989) Phylogeny and molecular data ( Technical comment ). Science 243: 550–551

    Google Scholar 

  • Fortey RA, Briggs DEG, Wills MA (1996) The Cambrian evolutionary “explosion”: decoupling cladogenesis from morphological disparity. Biol J Linn Soc 57: 13–33

    Google Scholar 

  • Funch P (1996) The chordoid larva of Symbion pandora (Cycliophora) is a modified trochophore. J Morphol 230: 231–262

    Google Scholar 

  • Funch P, Kristensen RM (1995) Cycliophora is a new phylum with affinities to Entoprocta and Ectoprocta. Nature 378: 711–714

    CAS  Google Scholar 

  • Gamulin V, Rinkevich B, Schäcke H, Kruse M, Müller IM, Müller WEG (1994) Cell adhesion receptors and nuclear receptors are highly conserved from the lowest Metazoa (marine sponges) to vertebrates. Biol Chem Hoppe Seyler 375: 583–588

    PubMed  CAS  Google Scholar 

  • Gamulin V, Skorokhod A, Kavsan V, Müller IM, Müller WEG (1997) Experimental indication in favor of the introns-late theory: the receptor kinase gene from the sponge Geodia cydonium. J Mol Evol 44: 242–252

    PubMed  CAS  Google Scholar 

  • Garrone R (1978) Phylogenies of connective tissue. Morphological aspects and biosynthesis of sponge intercellular matrix. Front Matrix Biol 5: 1–250

    Google Scholar 

  • Gehling JG, Rigby JK (1996) Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia. J Paleontol 70: 185–195

    Google Scholar 

  • Ghiselin MT (1988) The origin of molluscs in the light of molecular evidence. Oxf Surv Evol Biol 5: 66–95

    Google Scholar 

  • Giere O (1993) Meiobenthology. The microscopic fauna in aquatic sediments. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Gouy M, Li W-H (1989) Molecular phylogeny of the kingdoms Animalia, Plantae and Fungi. Mol Biol Evol 6: 109–122

    PubMed  CAS  Google Scholar 

  • Govindarajan S, Goldstein RA (1996) Why are some protein structures so common? Proc Natl Acad Aci USA 93: 3341–3345

    CAS  Google Scholar 

  • Graumann P, Maraherl MA (1996) A case of convergent evolution of nucleic acid binding molecules. Bioessays 18: 309–315

    PubMed  CAS  Google Scholar 

  • Greenberg MJ (1959) Ancestors, embryos, and symmetry. Syst Zool 8: 212–221

    Google Scholar 

  • Grell KG, Ruthmann A (1991) Placozoa. In: Harrison FW, Westfall JA (eds) Microscopic anatomy of invertebrates vol 2: Placozoa, Porifera, Cnidaria, and Ctenophora. Wiley-Liss, New York, pp 13–27

    Google Scholar 

  • Grens A, Mason E, Marsh JL, Bode HR (1995) Evolutionary conservation of a cell fate specification gene: the Hydra achaete-scute homolog has proneural activity in Drosophila. Development 121: 4027–4035

    PubMed  CAS  Google Scholar 

  • Grimmelikhuijzen CJP, Westfall JA (1995) The nervous systems of cnidarians. In: Breidbach O, Kutsch W (eds) The nervous systems of invertebrates: an evolutionary and comparative approach. Birkhäuser, Basel, pp 7–24

    Google Scholar 

  • Grimstone AV (1959) Cytology, homology and phylogeny–a note on “organic design”. Am Nat 93: 273–282

    Google Scholar 

  • Grotzinger JP, Bowring SA, Saylor BZ, Kaufman AJ (1995) Biostratigraphic and geochronologic constraints on early animal evolution. Science 270: 598–604

    CAS  Google Scholar 

  • Gupta RS (1995) Phylogenetic analysis of the 90kDa heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Mol Biol Evol 12: 1063–1073

    PubMed  CAS  Google Scholar 

  • Halanych KM, Bacheller JD, Aguinaldo AMA, Liva SM, Hillis DM, Lake JA (1995) Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science 267: 1641–1643

    PubMed  CAS  Google Scholar 

  • Hall BK (1996) Baupläne, phylotypic stages, and constraint. Why there are so few types of animals. Evol Biol 29:215–261

    Google Scholar 

  • Hanelt B, van Schyndel D, Adema CM, Lewis LA, Loker ES (1996) The phylogenetic position of Rhopalura ophiocomae (Orthonectida) based on 18S ribosomal DNA sequence analysis. Mol Biol Evol 13: 1187–1191

    PubMed  CAS  Google Scholar 

  • Hardison RC (1996) A brief history of hemoglobins: plant, animal, protist, and bacteria. Proc Natl Acad Sci USA 93: 5675–5679

    PubMed  CAS  Google Scholar 

  • Haszprunar G (1996) Plathelminthes and Plathelminthomorpha-paraphyletic taxa. J Zool Syst Evol Res 34: 41–48

    Google Scholar 

  • Hendriks L, van de Peer Y, van Herck M, Neefs J-M, de Watcher R (1990) The 18S ribosomal RNA sequence of the sea anemone Anemonia sulcata and its evolutionary position among other eukaryotes. FEBS Lett 269: 445–449

    CAS  Google Scholar 

  • Hofmann HJ, Narbonne GM, Aitken JD (1990) Ediacaran remains from intertillite beds in northwestern Canada. Geology 18: 1199–1202

    Google Scholar 

  • Holstein TW, Mala C, Kurz E, Bauer K, Greber M, David CN (1992) The primitive metazoan Hydra expresses antistasin, a serine protease inhibitor of vertebrate blood coagulation: cDNA cloning, cellular localisation and developmental regulation. FEBS Lett 309: 288–292

    PubMed  CAS  Google Scholar 

  • Inglis WG (1985) Evolutionary waves: patterns in the origins of animal phyla. Aust J Zool 33: 153–178

    Google Scholar 

  • Isenberg HD, Lavine LS (1973) Protozoan calcification. In: Zipkin I (ed) Biological mineralization. Wiley, New York, pp 649–686

    Google Scholar 

  • Isenberg HD, Douglas SD, Lavine LS, Spicer SS, Weissfellner H (1966) A protozoan model of hard tissue formation. Ann N Y Acad Sci 136: 155–190

    Google Scholar 

  • Katayama T, Wada H, Furuya H, Satoh N, Yamamoto M (1995) Phylogenetic position of the dicyemid Mesozoa inferred from 18S rDNA sequences. Biol Bull 189: 81–90

    PubMed  CAS  Google Scholar 

  • Katayama T, Nishioka M, Yamamoto M (1996) Phylogenetic relationships among turbellarian orders inferred from 18S rDNA sequences. Zool Sci 13: 747–756

    PubMed  CAS  Google Scholar 

  • Kerk D, Gee A, Standish M, Wainwright PO, Drum AS, Eiston RA, Sogin ML (1995) The rosette agent of chinook salmon (Oncorhynchus tshawytscha) is closely related to choanoflagellates, as determined by the phylogenetic analyses of its small ribosomal subunit RNA. Mar Biol 122: 187–192

    Google Scholar 

  • Kim CB, Moon SY, Gelder SR, Kim W (1996) Phylogenetic relationships of annelids, molluscs and arthropods evidenced from molecules and morphology. J Mol Evol 43: 207–215

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Takahashi M, Wada H, Satoh N (1993) Molecular phylogeny inferred from sequences of small subunit ribosomal DNA, supports the monophyly of the Metazoa. Zool Sci 10: 827–833

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Wada H, Satoh N (1996) Early evolution of the Metazoa and phylogenetic status of diploblasts as inferred from amino acid sequence of elongation factor-lα. Mol Phylog Evol 5: 414–422

    CAS  Google Scholar 

  • Kruse M, Mikoc A, Cetkovic H, Gamulin V, Rinkevich B, Müller IM, Müller WEG (1994) Molecular evidence for the presence of a developmental gene in the lowest animals: identification of a homeobox-like gene in the marine sponge Geodia cydonium. Mech Ageing Dev 77: 43–54

    PubMed  CAS  Google Scholar 

  • Kuhn K, Streit B, Schierwater B (1996) Homeobox genes in the cnidarian Eleutheria dichotoma: evolutionary implications for the origin of Antennapedia-class (Hom/Hox) genes. Mol Phylog Evol 6: 30–38

    CAS  Google Scholar 

  • Kumar S, Rzhetsky A (1996) Evolutionary relationships of eukaryotic kingdoms. J Mol Evol 42: 183–193

    PubMed  CAS  Google Scholar 

  • Lafay B, Boury-Esnault N, Vacelet J, Christen R (1992) An analysis of partial 28S ribosomal RNA sequences suggests early radiations of sponges. Biosystems 28: 139–151

    PubMed  CAS  Google Scholar 

  • Lake JA (1990) Origin of the Metazoa. Proc Natl Acad Sci USA 87: 763–766

    PubMed  CAS  Google Scholar 

  • Macey JR, Larson A, Ananjeva NB, Papenfuss TJ (1997) Replication slippage may cause parallel evolution in the secondary structures of mitochrondrial transfer RNA. Mol Biol Evol 14: 30–39

    PubMed  CAS  Google Scholar 

  • Mackie GO, Singla CL (1983) Studies on hexactinellid sponges. I. Histology of Rhabdocalyptus dawsoni (Lambe, 1873). Philos Trans R Soc Lond [Biol) 301: 365–400

    Google Scholar 

  • McCaffrey MA, Moldowan JM, Lipton PA, Summons RE, Peters KE, Jeganathan A, Watt DS (1994) Paleoenvironmental implications of novel C30 steranes in Precambrian to Cenozoic age petroleum and bitumen. Geochim Cosmochim Acta 58: 529–532

    CAS  Google Scholar 

  • Messier W, Stewart CB (1997) Episodic adaptive evolution of primate lysozymes. Nature 385: 151–154

    PubMed  CAS  Google Scholar 

  • Miles A, Miller DJ (1992) Genomes of diploblastic organisms contain homeoboxes: sequences of eveC, an even-skipped homolog from the cnidarian Acropora formosa. Proc R Soc Lond [Biol] 248: 159–161

    CAS  Google Scholar 

  • Miller DJ, Miles A (1993) Homeobox genes and the zootype. Nature 365: 215–216

    PubMed  CAS  Google Scholar 

  • Miller DJ, Harrison PL, Mahony TJ, McMillan JP, Miles A, Odorcio DM, ten Lohius MR (1993) Nucleotide sequence of the histone gene cluster in the coral Acropora formosa (Cnidarian; Scleractinia): features of histone gene structure and organization are common to diploblastic and triploblastic metazoans. J Mol Evol 37: 245–253

    PubMed  CAS  Google Scholar 

  • Misevic GN, Schlup V, Burger MM (1990) Larval metamorphosis of Microciona prolifera: evidence against the reversal of layers. In: Rützler K, Macintyre W, Smith KP (eds) New perspectives in sponge biology. Smithsonian Institution Press, Washington, pp 182–187

    Google Scholar 

  • Moore J, Willmer P (1997) Convergent evolution in invertebrates. Biol Rev 72: 1–60

    PubMed  CAS  Google Scholar 

  • Morris PJ (1993) The developmental role of the extracellular matrix suggests a monophyletic origin of the Kingdom Animalia. Evolution 47: 152–165

    Google Scholar 

  • Morris PJ, Cobabe E (1991) Cuvier meets Watson and Crick: the utility of molecules as classical homologies. Biol J Linn Soc 44: 307–324

    Google Scholar 

  • Müller WEG (1995) Molecular phylogeny of Metazoa (Animals): monophyletic origin. Naturwissenschaften 82: 321–329

    PubMed  Google Scholar 

  • Müller WEG, Schöder HC, Müller IM, Gamulin V (1994) Phylogenetic relationship of ubiquitin repeats in the polyubiquitin gene from the marine sponge Geodia cydonium. J Mol Evol 39: 369–377

    PubMed  Google Scholar 

  • Müller WEG, Müller IM, Rinkevich B, Gamulin V (1995) Molecular evolution: evidence for the monophyletic origin of multicellular animals. Naturwissenschaften 82: 36–38

    PubMed  Google Scholar 

  • Murtha M, Leckman J, Ruddle J (1991) Detection of homeobox genes in development and evolution. Proc Natl Acad Sci USA 88: 10711–10715

    PubMed  CAS  Google Scholar 

  • Naito M, Ishiguro H, Fujisawa R, Kurosawa Y (1993) Presence of eight distinct homeobox-containing genes in cnidarians. FEBS Lett 333: 271–274

    PubMed  CAS  Google Scholar 

  • Nielsen C (1995) Animal evolution. Interrelationships of the living phyla. Oxford University Press, Oxford

    Google Scholar 

  • Nikoh N, Hayase N, Iwabe N, Kuma K-I, Miyata T (1994) Phylogenetic relationship of the Kingdoms Animalia, Plantae, and Fungi, inferred from 23 different protein sequences. Mol Biol Evol 11: 762–768

    PubMed  CAS  Google Scholar 

  • Nursall JR (1962) On the origins of the major groups of animals. Evolution 16: 118–123

    Google Scholar 

  • Odorico DM, Miller DJ (1997) Internal and external relationships of the Cnidaria: implications of primary and predicted secondary structure of the 5′-end of the 23S-like rDNA. Proc R Soc Lond [Biol] 264: 77–82

    CAS  Google Scholar 

  • Ottilie S, Raulf F, Barnekow A, Hannig G, Schartl M (1992) Multiple sre-related kinase genes, srkl + 4, in the fresh water sponge Spongilla lacustris. Oncogene 7: 1625–1630

    PubMed  CAS  Google Scholar 

  • Pancer Z, Kruse M, Müller I, Müller WEG (1997) On the origin of metazoan adhesion receptors: cloning of integrin and subunit from the sponge Geodia cydonium. Mol Biol Evol 14: 391–398

    PubMed  CAS  Google Scholar 

  • Patterson C (1989) Phylogenetic relations of major groups: conclusions and prospects. In: Fernholm B, Bremer K, Jörvall H (eds) The hierarchy of life. Molecules and morphology in phylogenetic analysis. Excerpta Medica, Amsterdam, pp 471–488

    Google Scholar 

  • Pawlowski J, Montoya-Burgos J-I, Fahrni JF, Wüest J, Zaninetti L (1996) Origin of the Mesozoa inferred from 18S rRNA gene sequences. Mol Biol Evol 13: 1128–1132

    PubMed  CAS  Google Scholar 

  • Philippe H, Chenuil A, Adoutte A (1994) Can the Cambrian explosion be inferred through molecular phylogeny? Development (Suppl) 1994: 15–25

    Google Scholar 

  • Raff RA, Marshall CR, Turbeville JM (1994) Using DNA sequences to unravel the Cambrian radiation of the animal phyla. Annu Rev Ecol Syst 25: 351–375

    Google Scholar 

  • Reber-Müller S, Spissinger R, Schuchert P, Spring J, Schmid V (1995) An extracellular matrix protein of jellyfish homologous to mammalian fibrillins forms different fibrils depending on the life stage of the animal. Dev Biol 169: 662–672

    PubMed  Google Scholar 

  • Reiswig HM, Mackie GO (1983) Studies on hexactinellid sponges. III. The taxonomic status of Hexactinellida within the Porifera. Philos Trans R Soc Lond [Biol] 301: 419–428

    Google Scholar 

  • Rodrigo AG, Bergquist PR, Bergquist PL (1994) Inadequate support for an evolutionary link between the Metazoa and the Fungi. Syst Biol 43: 578–584

    Google Scholar 

  • Rohde K, Watson N, Cannon LRG (1988) Ultrastructure of epidermal cilia of Pseudactinoposthia sp (Platyhelminthes, Acoela): implications for the phylogenetic status of the Xenoturbellida and Acoelomorpha. J Submicrosc Cytol Pathol 20: 759–767

    Google Scholar 

  • Runnegar B (1982) A molecular-clock date for the origin of animal phyla. Lethaia 15: 199–205

    Google Scholar 

  • Runnegar B (1985) Collagen gene construction and evolution. J Mol Evol 22: 141–149

    PubMed  CAS  Google Scholar 

  • Sarras MP, Yan L, Grens A, Zhang X, Agbas A, Huff JK, St John PL, Abrahamson DR (1994) Cloning and biological function of laminin in Hydra vulgaris. Dev Biol 164: 312–324

    PubMed  CAS  Google Scholar 

  • Schäcke H, Müller WEG, Gamulin V, Rinkevich B (1994a) The Ig superfamily includes members from the lowest invertebrates to the highest vertebrates. Immunol Today 15: 497–498

    PubMed  Google Scholar 

  • Schäcke H, Rinkevich B, Gamulin V, Müller IM, Müller WEG (1994b) Immunoglobulin-like domain is present in the extracellular part of the receptor tyrosine kinase from the marine sponge Geodia cydonium. J Mol Recogn 7: 273–276

    Google Scholar 

  • Schäcke H, Schröder HC, Gamulin V, Rinkevich B, Müller IM, Müller WEG (1994c) Molecular cloning of a tyrosine kinase gene from the marine sponge Geodia cydonium: a new member belonging to the receptor tyrosine kinase class II family. Mol Membr Biol 11: 101–107

    PubMed  Google Scholar 

  • Schartl M, Barnekow A (1982) The expression in eukaryotes of the tyrosine kinase which is reactive with pp60v-src antibodies. Differentiation 23: 109–114

    PubMed  CAS  Google Scholar 

  • Schlegel M, Lom J, Stechmann A, Bernhard D, Leipe D, Dykova I, Sogin ML (1996) Phylogenetic analysis of complete subunit ribosomal RNA coding region of Myxidium lieberkuehni: evidence that Myxozoa are Metazoa and related to the Bilateria. Arch Protistenkd 147: 1–9

    Google Scholar 

  • Schierwater B, Murtha M, Dick M, Ruddle FH, Buss LW (1991) Homeoboxes in cnidarians. J Exp Zool 260: 413–416

    PubMed  CAS  Google Scholar 

  • Schram FR (1991) Cladistic analysis of metazoan phyla and the placement of fossil problematica. In: Simonetta AM, Conway Morris S (eds) The early evolution of Metazoa and the significance of problematic taxa. Cambridge University Press, Cambridge, pp 35–46

    Google Scholar 

  • Schummer M, Scheurlen I, Schaller C, Galliot B (1992) Hom/Hox homeobox genes are present in hydra (Chlorohydra viridissima) and are differentially expressed during regeneration. EMBO J 11: 1815–1823

    PubMed  CAS  Google Scholar 

  • Seilacher A (1989) Vendozoa: organismic construction in the Proterozoic biosphere. Lethaia 22: 229–239

    Google Scholar 

  • Seilacher A (1992) Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. J Geol Soc Lond 149: 607–613

    Google Scholar 

  • Seimiya K, Ishiguro H, Miura K, Watanabe Y, Kurosawa Y (1994) Homeobox-containing genes in the most primitive Metazoa, the sponges. Eur J Biochem 221: 219–225

    PubMed  CAS  Google Scholar 

  • Shenk MA, Steele RE (1993) A molecular snapshot of the metazoan “Eve”. Trends Biochem Sci 18: 459–463

    PubMed  CAS  Google Scholar 

  • Shenk MA, Bode HR, Steele RE (1993a) Expressions of Cnox-2, a HOM/HOX homeobox gene in hydra, is correlated with axial pattern formation. Development 117: 657–667

    PubMed  CAS  Google Scholar 

  • Shenk MA, Gee L, Steele RE, Bode HR (1993b) Expression of Cnox-2, a HOM/HOX gene is suppressed during head formation in hydra. Dev Biol 160: 108–118

    PubMed  CAS  Google Scholar 

  • Shostak S, Kolluri V (1995) Symbiogenetic orgins of cnidarian cnidocysts. Symbiosis 19: 1–29

    Google Scholar 

  • Siddall ME, Martin DS, Bridge D, Desser SS, Cone DK (1995) The demise of a phylum of protists: phylogeny of Myxozoa and other parasitic Cnidaria. J Parasitol 81: 961–967

    PubMed  CAS  Google Scholar 

  • Simpson TL (1984) The cell biology of sponges. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Sleigh MA (1979) Radiation of the eukaryote Protista. In: House MR (ed) The origin of major invertebrate groups. The Systematics Association, spec vol 12. Academic Press, New York, pp 23–53

    Google Scholar 

  • Smith J, Tyler S (1985) The acoel turbellarians: kingpins of metazoan evolution or a specialized offshoot? In: Conway Morris S, George JD, Gibson R, Platt HM (eds) The origins and relationships of lower invertebrates. The Systematics Association, spec vol 28. Clarendon Press, Oxford, pp 123–142

    Google Scholar 

  • Smothers JF, von Dohlen CF, Smith LH, Spall RD (1994) Molecular evidence that the myxozoan protists are metazoans. Science 265: 1719–1721

    PubMed  CAS  Google Scholar 

  • Steiner M, Mehl D, Reitner J, Erdtmann B-D (1993) Oldest entirely preserved sponges and other fossils from the lowermost Cambrian and a new facies reconstruction of the Yangtze platform ( China ). Berl Geowiss Abh E9: 293–329

    Google Scholar 

  • Stern M, Stern R (1992) A collagenous sequence in a prokaryotic hyaluronidase. Mol Biol Evol 9: 1179–1180

    PubMed  CAS  Google Scholar 

  • Stewart CB, Wilson AC (1987) Sequence convergence and functional adaptation of stomach lysozymes from foregut fermenters. Cold Spring Harbor Symp Quant Biol 52: 891–899

    PubMed  CAS  Google Scholar 

  • Storch V (1979) Contributions of comparative ultrastructural research to problems of invertebrate evolution. Am Zool 19: 637–645

    Google Scholar 

  • Swanson KW, Irwin PM, Wilson AC (1991) Stomach lysozyme gene of the langur monkey: tests for convergence and positive selection. J Mol Evol 33: 418–425

    PubMed  CAS  Google Scholar 

  • Von Ossowski I, Hausner G, Loewen PC (1993) Molecular evolutionary analysis based on the amino acid sequence of catalase. J Mol Evol 37: 71–76

    Google Scholar 

  • Von Salvini-Plawen L (1978) On the origin and evolution of the lower Metazoa. Z Zool Syst Evol Forsch 16: 40–88

    Google Scholar 

  • Waggoner BM (1996) Phylogenetic hypotheses of the relationships of arthropods to Precambrian and Cambrian problematic taxa. Syst Biol 45: 190–222

    Google Scholar 

  • Wainwright PO, Hinkle G, Sogin ML, Stickel SK (1993) Monophyletic origins of the Metazoa: an evolutionary link with fungi. Science 260: 340–342

    Google Scholar 

  • Wake DB (1991) Homoplasy: the result of natural selection, or evidence of design limitations. Am Nat 138: 543–567

    Google Scholar 

  • Waterborg JH, Robertson AJ (1996) Common features of analagous replacement. Histone H3 genes in animals and plants. J Mol Evol 43: 194–201

    PubMed  CAS  Google Scholar 

  • Weill R (1946) Ctenoctophrys chattoni N.G., N.Sp., infusoire planctonique octoradié à caractère de méduse et de cténophore. C R Acad Sci Paris 222:683–685

    Google Scholar 

  • Wells RS (1996) Excessive homoplasy in an evolutionarily constrainted protein. Proc R Soc Lond [Biol] 263: 393–400

    CAS  Google Scholar 

  • Willmer P (1990) Invertebrate relationships. Patterns in animal evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Winnepenninckx B, Backeljau T, van de Peer Y, de Wachter R (1992) Structure of the small ribosomal subunit RNA of the pulmonate snail Limicolaria kambeul and phylogenetic analysis of the Metazoa. FEBS Lett 309: 123–126

    Google Scholar 

  • Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141: 173–216

    PubMed  CAS  Google Scholar 

  • Woollacott RM, Pinto RL (1995) Flagellar basal apparatus and its utility in phylogenetic analyses of the Porifera. J Morphol 226: 247–265

    Google Scholar 

  • Wray G A, Levinton JS, Shapiro LH (1996) Molecular evidence for deep Pre-Cambrian divergences among metazoan phyla. Science 274: 568–573

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morris, S.C. (1998). The Question of Metazoan Monophyly and the Fossil Record. In: Müller, W.E.G. (eds) Molecular Evolution: Towards the Origin of Metazoa. Progress in Molecular and Subcellular Biology, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72236-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72236-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72238-7

  • Online ISBN: 978-3-642-72236-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics