Implicit Programming and the Invariant Manifold for Ramsey Equilibria

  • Robert A. Becker
  • Ciprian Foias
Conference paper


We present an economically motivated construction of the global invariant manifold for a class of Ramsey equilibria. This invariant manifold is found by solving a functional equation for an implicit programming problem based on the most patient household’s necessary condition for an optimum. An iterative process is given which yields the first agent’s optimal policy function in the limit and thereby the invariant manifold.


Euler Equation Capital Stock Invariant Manifold Policy Function Maximal Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Robert A. Becker, On the long-run steady state in a simple dynamic model of equilibrium with heterogeneous households, Quarterly Journal of Economics 95 (1980), 375–382.CrossRefGoogle Scholar
  2. 2.
    Robert A. Becker and John H. Boyd III, Capital Theory, Equilibrium Analysis and Recursive Utility, Basil Blackwell, Cambridge, 1997.Google Scholar
  3. 3.
    Robert A. Becker, John H. Boyd III, and Ciprian Foias, The existence of Ramsey equilibrium, Econometrica 59 (1991), 441–460.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Robert A. Becker and Ciprian Foias, A minimax approach to the implicit programming problem, Economic Letters 20 (1986), 171–175.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Robert A. Becker and Ciprian Foias, A characterization of Ramsey equilibrium, Journal of Economic Theory 41 (1987), 173–184.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Robert A. Becker and Ciprian Foias, Convergent Ramsey equilibrium, Liberias Mathematica 10 (1990), 41–52.MathSciNetMATHGoogle Scholar
  7. 7.
    Robert A. Becker and Ciprian Foias, The local bifurcation of Ramsey equilibrium, Economic Theory 4 (1994), 719–744.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Richard Bellman, Dynamic Programming, Princeton University Press, 1957.Google Scholar
  9. 9.
    Wilbur John Coleman II, Equilibrium in a production economy with an income tax, Econometrica 59 (1991), 1091–1104.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Timothy J. Kehoe, David K. Levine, and Paul M. Romer, On characterizing equilibria in economies with externalities and taxes as solutions to optimization problems, Economic Theory 2 (1992), 43–68.MATHCrossRefGoogle Scholar
  11. 11.
    Frank Ramsey, A mathematical theory of saving, Economic Journal 38 (1928), 453–559.CrossRefGoogle Scholar
  12. 12.
    Gerhard Sorger, On the structure of Ramsey equilibrium: cycles, indeterminacy, and sunspots, Economic Theory 4 (1994), 745–764.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Gerhard Sorger, Chaotic Ramsey equilibrium, International Journal of Bifurcation and Chaos 5 (1995), 373–380.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Nancy Stokey and Robert E. Lucas with Edward Prescott, Recursive Methods in Economic Dynamics, Harvard University Press, 1989.Google Scholar
  15. 15.
    Alfred Tarski, A lattice-theoretical fixpoint theorem and Its applications, Pacific Journal of Mathematics 5 (1955), 285–309.MathSciNetMATHGoogle Scholar
  16. 16.
    Eberhard Ziedler, Nonlinear Functional Analysis and Its Applications I: Fixed Point Theorems, Springer, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1998

Authors and Affiliations

  • Robert A. Becker
    • 1
  • Ciprian Foias
    • 2
  1. 1.Department of EconomicsIndiana UniversityBloomingtonUSA
  2. 2.Department of MathematicsIndiana UniversityBloomingtonUSA

Personalised recommendations