Skip to main content

Evaluation of Equations of State at High Pressure for Light Hydrocarbons

  • Chapter
Thermodynamic Modeling and Materials Data Engineering

Part of the book series: Data and Knowledge in a Changing World ((DATAKNOWL))

Abstract

Equations of state are used for predicting reservoir fluid properties in a large range of pressures and temperatures. The choice of an equation depends on the type of component, the pressure and temperature ranges and the property to be computed. In this work, four equations are tested (Peng-Robinson, Simonet-Behar Rauzy, Lee and Kesler, Chain of Rotators) for three different thermodynamic properties (molar volumes, isobaric and isochoric residual heat capacities). The accuracy of the calculations for alkanes from methane up to n-butane are expressed as deviation maps in (P,T) coordinates. The analysis is mainly focused on the behavior in the high pressure and high temperature regions. The modified version of the Lee & Kesler method provides good density results for hydrocarbons up to n-butane, but is not to be used for heavier components

Résumé

Des équations d’état permettent de prédire les propriétés des fluides de réservoirs (pétroliers) dans une large gamme de pressions et de températures. Le choix d’une équation dépend du type de fluide, des intervalles de pression et de température et de la grandeur à prévoir. Dans le travail présenté, quatre équations ont été testées (Peng-Robinson, Simonet-Behar Rauzy, Lee et Kesler, Chain of Rotators) pour trois différentes propriétés thermodynamiques (volume molaire, capacités calorifiques résiduelles isobares et isochores). La précision des calculs pour les alkanes depuis le méthane jusqu’au n-butane est présentée sur des cartes de déviation en coordonnées pression et température. L’analyse a porté principalement sur le comportement devant les hautes pressions et les hautes températures. La version modifiée de la méthode de Lee et Kesler, fournit de bons résultats pour la densité des hydrocarbures jusqu’au n-butane mais ne convient pas pour des composés plus lourds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alder B.J., DA. Young and M.A.Mark. Young and M.A.Mark, “Studies in molecular dynamics. X. Corrections to the augmented Van der Waals Theory for the square well fluid” J. Chem. Phys., 56, N°6, (1972), 3013–3029

    Google Scholar 

  2. Aly F.A. and L.L. Lee, “Self-consistent equations for calculating the ideal gas heat capacity, enthalpy and entropy” Fluid Phase Eq., 6, (1981), 169–179

    Article  CAS  Google Scholar 

  3. Babb S.E. and S.L. Robertson, “Isotherms of ethylene and propane to 10000 bar”, J. Chem. Phys, 53, N°3, (1970), 1097

    Google Scholar 

  4. Barreau A, J. Vidal and J. Mogensen, “Isobaric heat capacity calculation of light hydrocarbons by means of equations of state” Revue de Tlnstitut Fran9ais du Petrole, 48, N°5, (1993), 515–525

    Google Scholar 

  5. Behar E, R. Simonet and E.Rauzy, “A new non-cubic equation of state”, Fluid Phase Eq, 21, (1985), 237–255

    CAS  Google Scholar 

  6. Behar E, R. Simonet and E.Rauzy, “A new non-cubic equation of state, ERRATUM”, Fluid Phase Eq, 31, (1986), 319

    Google Scholar 

  7. Carnahan N.F. and K.E. Starling, “Intermolecular Repulsions and the Equation of State for Fluids” AIChE. J, 18, N°6, (1972), 1184–1189

    Google Scholar 

  8. Chapman W.G, K.E. Gubbins, G. Jackson and M. Radosz, “New reference equation of state for associating fluids” Ind. Eng. Chem. Res, 29, (1990), 1709–1721

    Article  CAS  Google Scholar 

  9. Chien C.H, R.A.Greenkorn, K.C. Chao, “Chain-of-rotators equation of state”, AIChE. J, 29, N°4, (1983), 560–571

    Google Scholar 

  10. de Hemptinne J, P. Ungerer, “Accuracy of the volumetric predictions of some important equations of state, including a modified version of the Lee and Kesler method” Fluid Phase Eq. submitted for publication

    Google Scholar 

  11. Friend D.G, J.F. Ely and H Ingham: “Thermophysical properties of methane”, J. Phys. Chem. Ref. Data, 18, N°2, (1989), 583

    Google Scholar 

  12. Friend D.G, H. Ingham and J.F. Ely, “Thermophysical properties of ethane”, J. Phys. Chem. Ref. Data, 20, N°2, (1991), 275

    Google Scholar 

  13. Jullian S, A. Barreau, E. Behar and J. Vidal, “Application of the SBR equation to high molecular weight hydrocarbons”, Chem. Eng. Sci, 44, N°4, (1989), 1001–1004

    Google Scholar 

  14. Lee B.I and M.G. Kesler, “A generalized thermodynamic correlation based on three-parameter corresponding states”, AIChE. J, 21, N°3, (1975), 510

    Google Scholar 

  15. Peneloux A, E. Rauzy and R. Freze, “A consistent correction for Redlich- Kwong-Soave volumes”, Fluid Phase Eq, 8, (1982), 7–23

    Article  CAS  Google Scholar 

  16. Peng D-Y and D.B. Robinson, “A new two-constant equation of state”, Ind. Eng. Chem. Fundam, 15, (1976), 59–64

    Article  CAS  Google Scholar 

  17. Reid R.C, J.M. Prausnitz and T.K. Sherwood, “The properties of gases and liquids”, 3rd edition, Mc Graw Hill Book Comp, (1977)

    Google Scholar 

  18. Schmidt R and W. Wagner, “A new form of the equation of state for pure substances and its application to oxygen”, Fluid Phase Eq, 19, (1985), 175–200

    Article  CAS  Google Scholar 

  19. Solimando R, “Equations d’etat susceptibles de representer les fluides petroliers”, Ph.D. Thesis, Universite de droit, d’economie et des sciences d’Aix-Marseille (1991)

    Google Scholar 

  20. Solimando R, M. Rogalski and L. Coniglio, “Heat capacity estimations using equations of state”, Thermochimica Acta, 211, (1992), 1–11

    Article  CAS  Google Scholar 

  21. Tsiklis D.S, A.I. Semenova, S.S. Tsimmerman and E.A. Emel’yanova, “Compressibility and thermodynamic properties of Ethane at ultrahigh pressures and high temperatures”, Russ. J. Phys. Chem, 46, N°11, (1972), 1677

    Google Scholar 

  22. Younglove B.A. and J.F. Ely, “Thermophysical properties of fluids II. Methane, ethane, propane, isobutane and normal butane”, J. Phys. Chem. Ref. Data, 16, N°4, (1987), 577

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

De Hemptinne, JC., Barreau, A., Ungerer, P., Behar, E. (1998). Evaluation of Equations of State at High Pressure for Light Hydrocarbons. In: Caliste, JP., Truyol, A., Westbrook, J.H. (eds) Thermodynamic Modeling and Materials Data Engineering. Data and Knowledge in a Changing World. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72207-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72207-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72209-7

  • Online ISBN: 978-3-642-72207-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics