Advertisement

Ionic Recognition Using Conducting Ceramics

  • Pierre Fabry
  • Hafit Khireddine
  • Marc Cretin
Part of the Data and Knowledge in a Changing World book series (DATAKNOWL)

Abstract

Three-dimensional (3d) frameworks of fast-alkali conductors have promising properties for electrochemical sensors. Their conductivity is excellent at room temperature (about 10−4 to 10−3 S.cm−1), very much higher than the conductivity of usual membranes. They are sufficiently stable in water to be proposed as sensitive membranes in ISE devices. The mobile ions, such as sodium or other alkali ions, move through the structure from one site to another by 3d tunnels which are very well calibrated in size. The higher the mobility of an ion, the faster its exchange at the interface with the analyzed solution.

The selectivity effect is based on this phenomenon. NASICON materials are good examples from this point of view. The framework can be optimized by suitable cationic substitutions to adjust the size of the conduction sites and thus improve the selectivity effect. Recent experimental results in this field on Na+ and Li+ membranes are shown.

Keywords

Selectivity Coefficient Sensitive Membrane Ionic Recognition Conducting Ceramic Inert Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Des milieux solides conducteurs de réseau tridimensionnel tel le NASICON presentent des propriétés intéressantes pour des capteurs électrochimiques. Leur conductivité est excellente à température ambiante, nettement plus élevée que celles des membranes habituelles. lis sont suffisamment stables dans l’eau pour être proposés comme membranes sensibles dans les dispositifs à électrode ionique sélective (ISE). Plus la mobilite d’un ion est élevée, plus ses échanges à l’interface avec la solution à analyser sont élevés, ce qui assure la sélectivité.

Le réseau peut être optimisé par des substitutions cationiques convenables pour régler la dimension des sites conducteurs et ainsi améliorer la sélectivité. Des résultats expériment aux récents sur des membranes à Na+ et a Li+ de ce type, sont présentés.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    The Principles of Ion Selective Electrodes and of Membrane Transport, W.E. Morf Ed., Elsevier Pub. Company, Amsterdam, 1988Google Scholar
  2. [2]
    M.S. Frant, J.W. Ross Jr., Science, 154 (1966) 1553–1555CrossRefGoogle Scholar
  3. [3]
    J.R. Sandifer, Anal. Chem., 60 (1988) 1553–1562CrossRefGoogle Scholar
  4. [4]
    Ion Selective Electrodes, J. Korita, K. Stulik Eds., Cambridge University Press, (1979)Google Scholar
  5. [5]
    V. Peres, P. Fabry, F. Genet, P. Dehaudt, J. Europ. Ceram. Soc., 13 (1994) 403–410CrossRefGoogle Scholar
  6. [6]
    J.B. Goodenough, H.P.Y. Hong, J.A. Kafalas, Mat. Res. Bull., 11 (1976) 203–220CrossRefGoogle Scholar
  7. [7]
    J.E. Engell, S. Mortensen, Radiometer Int. Patent WO 84 /01829, (1984)Google Scholar
  8. [8]
    P. Fabry, J.F. Million-Brodaz, M. Kleitz, Symp. Electrochemical Sensors, Rome, June 12–14, (1984)Google Scholar
  9. [9]
    D. Tranqui, J.J. Capponi, M. Gondrand, M. Saib, J.C. Joubert, R.D. Shannon, Solid State Ionics, 3–4 (1981) 219–222Google Scholar
  10. [10]
    H. Aono, E. Sugimoti, Y. Sadaoka, N. Imanaka, G.Y. Adachi, J. Electrochem. Soc., 137 (1990) 1023–1027CrossRefGoogle Scholar
  11. [11]
    A. Caneiro, P. Fabry, H. Khireddine, E. Siebert, Anal. Chem., 63 (1991) 2550–2557CrossRefGoogle Scholar
  12. [12]
    P. Fabry, E. Siebert, in Chemical Sensor Technology, vol. 4, S. Yamauchi Ed., Kodansha Ltd, Tokyo, (1992), 111–124Google Scholar
  13. [13]
    J. Bartroli, LI. Alerm, P. Fabry, E. Siebert, in Anal. Chim. Acta, 308, (1995), 102–108Google Scholar
  14. [14]
    B.P. Nickolskii, E.A. Materova, Ion Selective Electrode Rev., 7 (1985) 3–39Google Scholar
  15. [15]
    P. Fabry, C. Montero-Ocampo, M. Armand, Sensors and Actuators, 15 (1988) 1–9CrossRefGoogle Scholar
  16. [16]
    V. Leonhard, H. Erdmann, M. Ilgenstein, K. Cammann, J. Krause, Sensors and Actuators B, 18–19 (1994) 329–332Google Scholar
  17. [17]
    H. Khireddine, These INPG, Grenoble (France) (1992)Google Scholar
  18. [18]
    M. Cretin, P. Fabry, L. Abello, in J. Europ. Ceram. Soc, 15, (1995), 1149–1156CrossRefGoogle Scholar
  19. [19]
    O. Damasceno, E. Siebert, H. Khireddine, P. Fabry, Sensors and Actuators B, 8 (1992) 245–248Google Scholar
  20. [20]
    M. Attari, P. Fabry, H. Mallié, G. Quézel, Sensors and Actuators B 15–16 (1993) 173–178Google Scholar
  21. [21]
    Y.L. Huang, A. Caneiro, M. Attari, P. Fabry, Thin Solid Films, 196 (1991) 283–294CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Pierre Fabry
    • 1
  • Hafit Khireddine
    • 1
  • Marc Cretin
    • 1
  1. 1.Laboratoire d’Ionique et d’Electrochimie du Solide de GrenobleCNRS, URA 1213, ENSEEGSaint Martin d’Hères CedexFrance

Personalised recommendations