Phase Diagram Calculations and the Optimization of High Speed Steel Compositions for Economic Powder Metallurgy Processing Routes

  • I. Ansara
  • M. Durand-Charre
  • C. S. Wright
  • A. S. Wronski
  • J. Mascarenhas
  • M. Oliveira
  • E. Lemoisson
  • Y. Bienvenu
Part of the Data and Knowledge in a Changing World book series (DATAKNOWL)

Abstract

Processing through powder metallurgy becomes the only feasible way for the most highly alloyed of high speed steels (HSS), with carbon contents between 0.7 wt % and 2.5 wt% containing substantial amounts of carbide formers W and/or Mo, V, Cr.

The basis of the project of the European collaborative study to arrive at the definition of new grades of HSS that meet the sintering temperature through “computer assisted design of sinter able tool steels”, is presented..

Keywords

Furnace Carbide Europe Ferrite Austenite 

Résumé

L’élaboration en métallurgie des poudres devient la seule voie possible pour les plus alliés des aciers ultra rapides (HSS), avec des teneurs en car bone de 0.7% à 2.5% et contenant des quantités significatives de précurseurs de carbures tels que W et/ou Mo, V, Cr.

La base du projet de l’étude Européenne de collaboration pour trouver la définition de nouvelles nuances de HSS qui atteignent la temperature effective de frittage grâce à la « Determination d’ aciers à outils frittables assistée par ordinateur», est présentée.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Y. Bienvenu, A. Wronski, M. Jeandin, C.S. Wright, F. Lemoisson, and M. Vardavoulias, Rev. Metallurgie-CIT, Sci, Genie Materiaux, 91, (1994), 693–705Google Scholar
  2. [2]
    C.S. Wright, and B. Ogel, Powder Metall, 36, (1993), 213–219Google Scholar
  3. [3]
    P. Beiss, R. Wahling, and D Duda, “Modern Developments in Powder Metallurgy”, 17, (1985), 331–358Google Scholar
  4. [4]
    C.S. Wright, M. Lewicka, W.J.C. Price, and L. Fontaine, Powder Metallurgy, 32, 2 (1989), 109–113Google Scholar
  5. [5]
    C.S. Wright, “Sintering 91”, Proc. Vancouver 23–26 July 1991, Trans. Tech., Publ., (1992), 463–470Google Scholar
  6. [6]
    C.S. Wright, Powder Metallurgy 94, Proc. PM94, June, Paris, Ed. Ste. Fran9aise de Metallurgie et Materiaux, Vol. 2, (1994), 937–944Google Scholar
  7. [7]
    R.M. German, Intern. J. Powder Metall., 26, (1990), 23–43Google Scholar
  8. [8]
    K. Murakami, and A. Hatta, Sci. Rep. Tohoku Univ., Honda Anniversary Edition, 882–895Google Scholar
  9. [9]
    A. Wronski, C.S. Wright, W.J.C. Price, M. Oliveira, Y. Bienvenu, and F. Lemoisson, “Powder Metallurgy 94”, Proc. PM94, June, Paris, Ed. Ste, Franchise de Metallurgie et Materiaux, Vol. 2, (1994), 1035–1038Google Scholar
  10. [10]
    I. Ansara, B. Sundman, Computer Handling and Dissemination of Data, Ed. P.S. Glaeser, Proc. Xth COD ATA Conf., Ottawa July 1986. Elsevier Sci. Pub. (1986).Google Scholar
  11. [11]
    B. Sundman, B. Jansson, and J.-O. Andersson, Calphad, 2, 9, (1985), 153–190CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • I. Ansara
    • 1
  • M. Durand-Charre
    • 1
  • C. S. Wright
    • 2
  • A. S. Wronski
    • 2
  • J. Mascarenhas
    • 3
  • M. Oliveira
    • 3
  • E. Lemoisson
    • 4
  • Y. Bienvenu
    • 4
  1. 1.LTPCM/ENSEEGSaint Martin d’HeresFrance
  2. 2.University of BradfordBradfordUK
  3. 3.INETI, DMLisbonPortugal
  4. 4.Ecole des Mines de Paris, CDMEvryFrance

Personalised recommendations