Skip to main content

Materials Data Requirements for Computer Simulation in Design and Manufacture

  • Chapter

Part of the book series: Data and Knowledge in a Changing World ((DATAKNOWL))

Abstract

The paper considers a top-down systems approach to the wealth creation process starting at the marketplace, progressing to a design specification, the concept design phase and, through detailed design and manufacture, to delivery of the component or system to the client. At all stages of the process the need is considered for data and in particular materials data. Whilst the paper refers to the special features associated with the quality of materials data required at the concept stage of design, consideration is also given to the type of data required to underpin product innovation and technological forecasting. The bulk of the paper considers the materials data requirements for supercomputer simulation of the behavior of components in service and of products where the material is created and then used in service. The latter situation is considered via the optimization of the selection of materials for a high- temperature weldment in a pressurized steam pipe; and also via the assessment of the performance of a tension panel, containing a central circular hole, fabricated from a tough ceramic fiber-ceramic matrix composite. These examples show the diversity of requirements of materials data in supercomputer simulation at the detailed design stage. In the examples considered, reference is made to visualization and video animation to transmit two dimensional screen images of the time variation of field plots of stress and internal damage variables which can be interpreted satisfactorily by a range of cross-disciplinary specialists. Conclusions are made on the importance of linking the structure and accessibility of databases with the need to provide guidance from physics-based mechanism maps for deformation, damage and fracture.

Résumé

On considère une approche systémique descendante du processus de création de richesse, en partant du marché pour présenter au client un design détaillé et la réalisation industrielle des produits résultants. Cette démarche passe par la spécification de design et par la phase conceptuelle du design. On considère dans toutes les étapes du processus le besoin de données et, en particulier, des données sur les matériaux. Bien que l’on se concentre sur les aspects spéciaux associés à laqualité des donnees sur les matériaux nécessaires au stade conceptuel du design, on considère aussi les types de données sur lesquels sont basées l’innovation de produits et les prévisions technologiques. L’essentiel de cet article est orienté vers les exigences en données sur les matériaux nécessaires dans les simulations sur superordinateur du comportement des composants en service, ainsi que sur des produits imposant la création de matériaux en vue de leur utilisation courante. Dans ce dernier cas, on considère l’optimisation de la sélection des matériaux pour la soudure à haute température d’un circuit de vapeur sous pression; de meme on évalue la performance d’un tableau de tension contenant un orifice central circulaire, fabriqué à partir d’une matrice composite de fibres solides de céramique. Ces exemples sont utilisés pour souligner la diversité des exigences des données sur les matériaux dans la simulation sur superordinateur au niveau de la conception détaillée du design. Dans ces cas, nous nous référons à la visualisation et à l’animation vidéo pour transmettre des images d’écran en 2 D des variations temporelles de champ des sites de tension et des variables de dommage interne dont l’interprétation est acquise de façon satisfaisante grâce à la contribution de specialistes interdisciplinaires. En conclusion il est essentiel d’associer étroitement la structure et les fonctions d’accessibilité des bases de données à la nécessité de procurer aux spécialistes des cartes des mécanismes d’origine physique pour les déformations, les dommages et les fractures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refrences

  1. Ashby, M. F., A report on deformation-mechanisms maps. Acta Metall., 20, (1972), 887–892

    Google Scholar 

  2. Ashby, M. F., Materials selection in conceptual design, In Materials and Engineering Design: The next Decade, Ed. B. F. Dyson and D. R. Hayhurst, The Institute of metals, London, (1989), 13–25.

    Google Scholar 

  3. Cocks, A. C. F. and Ashby, M. F., On creep fracture by void growth, Progress in Materials Science, 27, (1982), 189–244.

    Article  CAS  Google Scholar 

  4. Dunne, F. P. E., Othman, A. M., Hall, F. R. and Hayhurst, D. R., Representation of uni-axial creep curves using Continuum Damage Mechanics, Int. J. Mech. Sci., 32, (1990), 945–957.

    Article  Google Scholar 

  5. Haddad, S. H., Studies in Ceramic Composite Materials and Structures using Continuum Damage Mechanics, PhD Dissertation, The University of Sheffield, UK, (1991).

    Google Scholar 

  6. Haddad, S. H., Hayhurst, D. R., and Leckie, F. A., Design of uni-axially loaded components fabricated from tough fiber-reinforced ceramic matrix composites, Proc. Roy. Soc. Lond. A, 434, (1991), 383–397.

    Article  CAS  Google Scholar 

  7. Hall, F. R. and Hayhurst, D. R., Modeling of Grain Size Effects in Creep Crack Growth Using a Non-local Continuum Damage Approach, Proc. Roy. Soc. Lond. A, 433, (1991), 405–421.

    Article  Google Scholar 

  8. Hall, F. R. and Hayhurst, D. R., Continuum Damage Mechanics Modeling of High Temperature Deformation and Failure in a Pipe Weldment, Proc. Roy. Soc. Lond. A, 433, (1991), 383–403.

    Article  Google Scholar 

  9. Hayhurst, D. R., Creep Rupture under Multi-Axial States of Stress, J. Mech. Phys. Solids, 20, (1972), 381–390.

    Article  Google Scholar 

  10. Hayhurst, D. R., Computer Aided Engineering: integrating themes, In Materials and Engineering Design: The Next Decade, Ed. B. F. Dyson and D. R. Hayhurst, The Institute of Metals, London, (1989), 113–117.

    Google Scholar 

  11. Hayhurst, D. R., The use of Computational Creep Continuum Damage Mechanics to Optimize Materials Selection for High-temperature Weldments, Modeling and Simulation in Materials Science and Engineering, 2, (1994), 421–438.

    Article  Google Scholar 

  12. Hayhurst, D. R., The use of Continuum Damage Mechanics in Creep Analysis for Design, Jnl. of Strain Analysis, 29, 3, (1994), 233–241.

    Article  Google Scholar 

  13. Hayhurst, D. R., Alsop, M., and Stone P.G., The Wealth Creation Process: Experiential Learning through Competitive Industry-led Group Design Projects and Underpinning Lectures, Jnl. of Eng. Design, 5, (1994), 4, 315–337.

    Article  Google Scholar 

  14. Hayhurst, D. R., Dimmer, P. R. and Morrison, C. J., Development of Continuum Damage in the Creep Rupture of Notched Bars, Phil. Trans. R. Soc. Lond., A, 311, (1984), 103–129.

    Article  Google Scholar 

  15. Hayhurst, D. R., Leckie, F. A. and Evans, A. G., Component design-based model for deformation and rupture of tough fiber-reinforced ceramic matrix composites, Proc. Roy. Soc. Lond. A, 424, (1991), 369–381.

    Google Scholar 

  16. Kowalewski, Z. L., Hayhurst, D. R. and Dyson, B. F., Mechanisms-Based Creep Constitutive Equations for an Aluminium Alloy, J. Strain Analysis, 29, 2, (1994), 1–8.

    Google Scholar 

  17. Monkman, F. C. and Grant, N. J., An Empirical Relationship between Rupture Life and Minimum Creep Rate in Creep-rupture Tests, Proc. ASTM, 56, (1956), 593–605.

    Google Scholar 

  18. Nuclear Electric, Private Communication with R. A. Ainsworth and M. C. Coleman, Berkeley Nuclear Labs, Gloucestershire, (1991).

    Google Scholar 

  19. Perrin, I. J. and Hayhurst, D.R., A Method for the Transformation of Creep Constitutive Equations, Int. J. Pres. Ves. Erroramp; Piping, 68, (1996), 299–309

    Article  CAS  Google Scholar 

  20. Preiss, K., Integration of Materials Data into Concurrent Engineering, Proceedings CODATA Workshop on Materials Data for Computer Aided Engineering, February 1993, Frankfurt, Germany. SERC, Strategic Users, IBM/SERC Supercomputing Joint Study, Science and Engineering Research Council (SERC), Rutherford and Appleton Laboratory, Proceedings, April, (1991).

    Google Scholar 

  21. Wang, Z. P. and Hayhurst, D. R., The use of supercomputer modeling of high- temperature failure in pipe weldments to optimize weld and heat affected zone materials property selection, Proc. Roy. Soc. Lond. A., 446, (1994), 127–148.

    Article  Google Scholar 

  22. Wang, Z. P. and Hayhurst, D. R., Materials Data for High-Temperature Design of Ferritic Steel Pressure Vessel Weldments, Int. J. Pressure Vessels and Piping, 55, (1993), 451–479.

    Article  Google Scholar 

  23. Wang, Z. P., Hayhurst, D. R., Bilby, B. A. and Howard, I. C., Vectorisation and parallel processing studies using a Cray X-MP in non-linear computational solid mechanics. Engineering Computations, 10, (1993), 387–395.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hayhurst, D.R. (1998). Materials Data Requirements for Computer Simulation in Design and Manufacture. In: Caliste, JP., Truyol, A., Westbrook, J.H. (eds) Thermodynamic Modeling and Materials Data Engineering. Data and Knowledge in a Changing World. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72207-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72207-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72209-7

  • Online ISBN: 978-3-642-72207-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics