Advertisement

Thermodynamic Models for Monitoring Deoxidation Treatments and Controlling Inclusions in Steels

  • Henri Gaye
  • Christian Gatellier
  • Jean Lehmann
Part of the Data and Knowledge in a Changing World book series (DATAKNOWL)

Abstract

A multiphase equilibrium calculation, based on IRSID’s statistical thermodynamics slag model, is used to predict the composition of endogeneous oxide and sulphide inclusions precipitated as a result of the deoxidation treatment, during metal solidification, or due to late reoxidations. This evaluation shows that the composition of inclusions is strongly affected by the content of trace elements (Ca, Mg and Al) in the steel. On the basis of these models, the monitoring of inclusion control by calcium treatment (Al-killed steels), or slag treatment (semi-killed steels) will be discussed.

Keywords

Liquid Steel Slag Composition High Carbon Steel Sulphide Inclusion Sulphide Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Un programme de calcul d’équilibre polyphasé, basé sur le modèle de thermodynamique statistique des laitiers développé à I’lRSID est utilisé pour prédire la composition des inclusions d’oxydes et de sulfures précipitant dans I’acier à la suite du traitement de désoxydation, pendant la solidification du métal, ou du fait de réoxydations à la coulée. Cette évaluation indique que la composition inclusionnaire est imposée par la teneur du métal en éléments traces (Ca, Mg et AI). L’optimisation du contrôle inclusionnaire par traitement calcium (aciers calmés AI) ou traitement métal-laitier en poche (aciers faiblement desoxydés) est discutée sur la base de ces modèles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Flood and K Grjotheim: J.I.S.I., 171, (1952),. 64.Google Scholar
  2. [2]
    H. Gaye, J.C. Grosjean, P.V. Riboud: in Proc. Conf. “Physical chemistry and steelmaking” Societe Fran9aise de Metallurgie, Versailles, (1978).Google Scholar
  3. [3]
    D.J. Sosinsky, I.D. Sommerville: Metall. Trans. B, 17 B, (1986), 331.Google Scholar
  4. [4]
    S. Ban-ya: Proc. of the 4th Int. Conf. on Molten Slags and Fluxes, The Iron and Steel Institute of Japan, (1992), 8.Google Scholar
  5. [5]
    G.W. Toop, C.S.Samis: Trans. TMS-AIME, 224, (1962), 224.Google Scholar
  6. [6]
    C.R. Masson: Proc. Roy. Soc., A 287, (1965), 201.Google Scholar
  7. [7]
    T. Yokokawa, K. Niwa: Trans. Japan Inst. Metals, 10, (1969), 3 and 81.Google Scholar
  8. [8]
    M.L. Kapoor, M.G. Frohberg: in Chemical metallurgy of iron and steel, The Iron and Steel Institute, London, (1973), 17.Google Scholar
  9. [9]
    H. Gaye, J. Welfringer: Proc. of the 2nd Int. Symp. on Metallurgical slags and fluxes, The Met. Soc. of AIME, Warrendale, PA, (1984), 357.Google Scholar
  10. [10]
    J. Lehmann, H. Gaye: Rev. Int. Hautes Temper. Refract., Fr., 28, (1992- 1993 ), 81.Google Scholar
  11. [11]
    E.A. Guggenheim: Mixtures, Clarendon Press, Oxford, (1952), 270.Google Scholar
  12. [12]
    W. Yamada, T. Matsumiya, A. Ito: Proc. of the 6th IISC, Nagoya, (1990),. 618.Google Scholar
  13. [13]
    H. Gaye, C. Gatellier, M. Nadif, P.V. Riboud, J. Saleil, M. Faral: Rev. Metallurgie-CIT, 84, N°11, (1987), 759.Google Scholar
  14. [14]
    C. Gatellier, H. Gaye, J. Lehmann, J. Bellot, M. Moncel: Rev. Metallurgie- CIT, 89, N°5, (1992), 361.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Henri Gaye
    • 1
  • Christian Gatellier
    • 1
  • Jean Lehmann
    • 1
  1. 1.IRSIDMaizières-lés-MetzFrance

Personalised recommendations