Advertisement

Positronen-Emissions-Tomographie bei Demenz vom Alzheimer-Typ

  • W.-D. Heiss
  • B. Szelies
Conference paper
Part of the Bayer-ZNS-Symposium book series (BAYERZNS, volume 13)

Zusammenfassung

Wegen der diagnostischen Unsicherheit der aktuellen Klassifikations- kriterien wird nach biologischen Markern für eine sichere Differenzierung der Alzheimer-Demenz (AD) von den vaskulären Demenzen (VD) und normalen altersabhängigen Veränderungen gesucht. Bei der AD führen progressiver Zellverlust, verminderte Zelldichte und Synapsenaktivität zu einer Verminderung von Glukosestoffwechsel und Durchblutung nach einem charakteristischen Muster vor allem im temporalen, parietalen und okzipitalen Assoziationskortex. Zur Früherkennung solcher Funktionsstörungen eignen sich daher funktionelle bild- gebende Verfahren wie die Positronen-Emissions-Tomographie (PET). Diese scheint nach heutigem Wissensstand das beste Verfahren zur Quantifizierung des regionalen zerebralen Glukosestoffwechsels und damit zur Darstellung der die AD begleitenden metabolischen Veränderungen zu sein. Aus der Untersuchung des Glukosestoffwechsels mittels PET ergeben sich wichtige Hinweise auf die Ätiologie von Gedächtnis- und kognitiven Einbußen, wobei die direkte Beziehung zwischen Schweregrad der Demenz und regionaler Verminderung des Glukosestoffwechsels auch als quantifizierbarer Marker für therapeutische Studien herangezogen werden kann.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alavi A, Newberg AB, Souder E, Berlin JA (1993) Quantitative analysis of PET and MRI data in normal aging and Alzheimer’s disease — atrophy weighted total brain metabolism and absolute whole-brain metabolism as reliable discriminators. J Nucl Med 34:1681–1687PubMedGoogle Scholar
  2. Amaducci L (1988) Phosphatidylserine in the treatment of Alzheimer’s disease: Results of a multicenter study. Psychopharmacol Bull 24: 130–134PubMedGoogle Scholar
  3. Andine P, Rudolphi KA, Fredholm BB, Hagberg H (1990) Effect of propentofylline (HWA 285) on extracellular purines and excitatory amino acids in CA1 of rat hippocampus during transient ischaemia. Br J Pharmacol 100: 814–818PubMedGoogle Scholar
  4. Baxter LR Jr, Schwartz JM, Phelps ME, Mazziotta JC, Guze BH, Selin CE, Gerner RH, Sumida RM (1989) Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry 46: 243–250PubMedCrossRefGoogle Scholar
  5. Benson DF (1993) Progressive frontal dysfunction. Dementia 4:149–153PubMedGoogle Scholar
  6. Benson DF, Kuhl DE, Hawkins RA, Phelps ME, Cummings JL, Tsai SY (1983) The fluorodeoxyglucose 18F scan in Alzheimer’s disease and multi-infarct dementia. Arch Neurol 40: 711–714PubMedCrossRefGoogle Scholar
  7. Blin J, Baron JC, Dubois B, Pillon B, Cambon H, Cambier J, Agid Y (1990) Positron emission tomography study in progressive supranuclear palsy. Brain hypometabolism pattern and clinicometabolic correlations. Arch Neurol 47: 747–752PubMedCrossRefGoogle Scholar
  8. Brun A (1993) Frontal-lobe degeneration of non-Alzheimer type revisited. Dementia 4:126–131PubMedGoogle Scholar
  9. Buchsbaum MS, Kesslak JP, Lynch G, Chui H, Wu J, Sicotte N, Hazlett E, Teng E, Cotman CW (1991) Temporal and hippocampal metabolic rate during an olfactory memory task assessed by positron emission tomography in patients with dementia of the Alzheimer type and controls — preliminary studies. Arch Gen Psychiatry 48: 840–847PubMedCrossRefGoogle Scholar
  10. Buchsbaum MS, Haier RJ, Potkin SG, Nuechterlein K, Bracha HS, Katz M, Lohr J, Wu J, Lottenberg S, Jerabek PA, Trenary M, Tafalla R, Reynolds C, Bunney WE Jr (1992) Frontostriatal disorder of cerebral metabolism in never-medicated schizophrenics. Arch Gen Psychiatry 49:935–942PubMedCrossRefGoogle Scholar
  11. Chase TN, Burrows GH, Mohr E (1987) Cortical glucose utilization patterns in primary degenerative dementias of the anterior and posterior type. Arch Gerontol Geriatr 6: 289–297PubMedCrossRefGoogle Scholar
  12. Chawluk JB, Mesulam MM, Hurtig H, Kushner M, Weintraub S, Saykin A, Rubin N, Alavi A, Reivich M (1986) Slowly progressive aphasia without generalized dementia: studies with positron emission tomography. Ann Neurol 19: 68–74PubMedCrossRefGoogle Scholar
  13. Chawluk JB, Alavi A, Dann R, Hurtig HI, Bais S, Kushner MJ, Zimmerman RA, Reivich M (1987) Positron emission tomography in aging and dementia: effect of cerebral atrophy. J Nucl Med 28: 431–437PubMedGoogle Scholar
  14. Cooper AJ, Magnus RV (1980) A placebo-controlled study of pyritinol (Enzephabol) in dementia. Pharmatherapeutica 2: 317–322PubMedGoogle Scholar
  15. Crook T, Petrie W, Wells C, Massari DC (1992) Effects of phosphatidylserine in Alzheimer’s disease. Psychopharmacol Bull 28: 61–66PubMedGoogle Scholar
  16. Cutler NR, Haxby JV, Duara R, Grady CL, Moore AM, Parisi JE, White J, Heston L, Margolin RM, Rapoport SI (1985) Brain metabolism as measured with positron emission tomography: serial assessment in a patient with familial Alzheimer’s disease. Neurology 35:1556–1561PubMedGoogle Scholar
  17. DeCarli C, Atack JR, Ball MJ, Kaye JA, Grady CL, Fewster P, Pettigrew KD, Rapoport SI, Schapiro MB (1991) The relation between neurofibrillary tangle density and regional cerebral metabolic rates for glucose in Alzheimer’s disease. Ann Neurol 30: 247–248Google Scholar
  18. DeKosky ST, Scheff WS (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: Correlation with cognitive severity. Ann Neurol 27: 457–464PubMedCrossRefGoogle Scholar
  19. DeLeon MJ, Ferris SH, George AE, Reisberg B, Christman DR, Kricheff II, Wolf AP (1983) Computed tomography and positron emission transaxial tomography evaluations of normal aging and Alzheimer’s disease. J Cereb Blood Flow Metab 3: 391–394CrossRefGoogle Scholar
  20. Duara R, Grady C, Haxby J, Sundaram M, Cutler NR, Heston L, Moore A, Schlageter N, Larson S, Rapoport SI (1986) Positron emission tomography in Alzheimer’s disease. Neurology 36:879–887PubMedGoogle Scholar
  21. Duara R, Barker WW, Chang J, Yoshii F, Loewenstein DA, Pascal S (1992) Viability of neocortical function shown in behavioral activation state. PET studies in Alzheimer’s disease. J Cereb Blood Flow Metab 12: 927–934PubMedCrossRefGoogle Scholar
  22. Erkinjuntti T, Hachinski VC (1993) Rethinking vascular dementia. Cerebrovasc Dis 3:3–23CrossRefGoogle Scholar
  23. Foster NL, Chase TN, Fedio P, Patronas NJ, Brooks RA, DiChiro G (1983) Alzheimer’s disease: Focal cortical changes shown by positron emission tomography. Neurology 33:961–965PubMedGoogle Scholar
  24. Foster NL, Gilman S, Berent S, Morin EM, Brown MB, Koeppe RA (1988) Cerebral hypometabolism in progressive supranuclear palsy studied with positron emission tomography. Ann Neurol 24: 399–406PubMedCrossRefGoogle Scholar
  25. Friedland RP, Budinger TF, Ganz E, Yano Y, Mathis CA, Koss B, Ober BA, Huesman RH, Derenzo SE (1983) Regional cerebral metabolic alterations in dementia of the Alzheimer type: Positron emission tomography with (18F)fluorodeoxyglucose. J Comput Assist Tomogr 7:590–598PubMedCrossRefGoogle Scholar
  26. Friedland RP, Koss E, Lerner A, Hedera P, Ellis W, Dronkers N, Ober BA, Jagust WJ (1993) Functional imaging, the frontal lobes, and dementia. Dementia 4:192–203PubMedGoogle Scholar
  27. Fukuyama H, Harada K, Yamauchi H, Miyoshi T, Yamaguchi S, Kimura J, Kameyama M, Senda M, Yonekura Y, Konishi J (1991) Coronal reconstruction images of glucose metabolism in Alzheimer’s disease. J Neurol Sci 106:128–134PubMedCrossRefGoogle Scholar
  28. Gemmel HG, Evans NTS, Besson JAO, Roeda D, Davidson J, Dodd MG, Sharp PF, Smith FW, Crawford JR, Newton RH, Kulkarni V, Mallard JR (1990) Regional cerebral blood flow imaging: a quantitative comparison of technetium-99m-HMPAO SPECT with (C02)0–15 PET. J Nucl Med 31: 1595–1600Google Scholar
  29. Gilman S, Adams K, Koeppe RA, Berent S, Kluin KJ, Modell JG, Kroll P, Brunberg JA (1990) Cerebellar and frontal hypometabolism in alcoholic cerebellar degeneration studies with positron emission tomography. Ann Neurol 28: 775–785PubMedCrossRefGoogle Scholar
  30. Grady CL, Haxby JV, Schlageter NL, Berg G, Rapoport SI (1986) Stability of metabolic and neuropsychological asymmetries in dementia of the Alzheimer type. Neurology 36:1390–1392PubMedGoogle Scholar
  31. Grady CL, Haxby JV, Horwitz B, Sundaram M, Berg G, Schapiro M, Friedland RP, Rapoport SI (1988) Longitudinal study of the early neuropsychological and cerebral metabolic changes in dementia of the Alzheimer type. J Clin Exp Neuropsychol 10: 576–596PubMedCrossRefGoogle Scholar
  32. Guze BH, Baxter LR, Schwartz JM, Szuba MP, Mazziotta JC, Phelps ME (1991) Changes in glucose metabolism in dementia of the Alzheimer type compared with depression — a preliminary report. Psychiatry Res 40: 195–202PubMedCrossRefGoogle Scholar
  33. Guze BH, Hoffman JM, Mazziotta JC, Baxter LR Jr, Phelps ME (1992) Positron emission tomography and familial Alzheimer’s disease: a pilot study. J Am Geriatr Soc 40:120–123PubMedGoogle Scholar
  34. Haxby JV, Duara R, Grady CL, Cutler NR, Rapoport SI (1985) Relations between neuropsychological and cerebral metabolic asymmetries in early Alzheimer’s disease. J Cereb Blood Flow Metab 5:193–200PubMedCrossRefGoogle Scholar
  35. Haxby JV, Grady CL, Koss E, Horwitz B, Schapiro M, Friedland RP, Rapoport SI (1988) Heterogeneous anterior-posterior metabolic patterns in dementia of the Alzheimer type. Neurology 38: 1853–1863PubMedGoogle Scholar
  36. Haxby JV, Grady CL, Koss E, Horwitz B, Heston L, Schapiro M, Friedland RP, Rapoport SI (1990) Longitudinal study of cerebral metabolic asymmetries and associated neuropsychological patterns in early dementia of the Alzheimer type. Arch Neurol 47: 753–760PubMedCrossRefGoogle Scholar
  37. Heiss W-D, Beil C, Herholz K, Pawlik G, Wagner R, Wienhard K (1985) Atlas der Positronen-Emissions-Tomographie des Gehirns. Springer, Berlin-Heidelberg-New York-TokyoGoogle Scholar
  38. Heiss W-D, Hebold I, Klinkhammer P, Ziffling P, Szelies B, Pawlik G, Herholz K (1988) Effect of piracetam on cerebral glucose metabolism in Alzheimer’s disease as measured by PET. J Cereb Blood Flow Metab 8:613–617PubMedCrossRefGoogle Scholar
  39. Heiss W-D, Herholz K, Pawlik G, Hebold I, Klinkhammer P, Szelies B (1989) PET findings in dementia disorders. Contributions to differential diagnosis and objectivizing of therapeutic effects. Keio J Med 38:111–135PubMedCrossRefGoogle Scholar
  40. Heiss W-D, Pawlik G, Holthoff V, Kessler J, Szelies B (1992) PET correlates of normal and impaired memory functions. Cerebrovasc Brain Metab Rev 4:1–27PubMedGoogle Scholar
  41. Heiss W-D, Kessler J, Mielke R, Szelies B, Herholz K (1994) Long-term effects of phosphati-dylserine, pyritinol, and cognitive training in Alzheimer’s disease. Dementia 5: 88–98PubMedGoogle Scholar
  42. Herholz K (1995) FDG PET and differential diagnosis of dementia. Alzheimer Dis Assoc Disord 9: 6–16PubMedCrossRefGoogle Scholar
  43. Herholz K, Adams R, Kessler J, Szelies B, Grond M, Heiss W-D (1990) Criteria for the diagnosis of Alzheimer’s disease with positron emission tomography. Dementia 1:156–164Google Scholar
  44. Herholz K, Perani D, Salmon E, Franck F, Fazio F, Heiss W-D, Comar D (1993) Comparability of FDG PET studies in probable Alzheimer’s disease. J Nucl Med 34:1460–1466PubMedGoogle Scholar
  45. Herholz K, Halber M, Nordberg A, Salmon E, Perani D, Heiss W-D. (for the EC Study Group) (1998) A multi-center study of the diagnostic value of FDG PET in possible Alzheimer’s disease. In pressGoogle Scholar
  46. Jagust WJ, Friedland RP, Budinger TF, Koss E, Ober B (1988) Longitudinal studies of regional cerebral metabolism in Alzheimer’s disease. Neurology 38: 909–912PubMedGoogle Scholar
  47. Kamo H, McGeer PL, Harrop R, McGeer EG, Calne DB, Martin WRW, Pate BD (1987) Positron emission tomography and histopathology in Pick’s disease. Neurology 37: 439–445PubMedGoogle Scholar
  48. Karbe H, Grond M, Huber M, Herholz K, Kessler J, Heiss W-D (1992) Subcortical damage and cortical dysfunction in progressive supranuclear palsy demonstrated by positron emission tomography. J Neurol 239: 98–102PubMedCrossRefGoogle Scholar
  49. Kempler D, Metter EJ, Riege WH, Jackson CA, Benson DF, Hanson WR (1990) Slowly progressive aphasia — 3 cases with language, memory, CT and PET data. J Neurol Neurosurg Psychiatry 53:987–993PubMedCrossRefGoogle Scholar
  50. Kessler J, Herholz K, Grond M, Heiss W-D (1991) Impaired metabolic activation in Alzheimer’s disease: A PET study during continuous visual recognition. Neuropsychologia 29:229–243PubMedCrossRefGoogle Scholar
  51. Klinkhammer P, Szelies B, Heiss W-D (1990) Effect of phosphatidylserine on cerebral glucose metabolism in Alzheimer’s disease. Dementia 1:197–201Google Scholar
  52. Kuhl DE, Metter EJ, Benson DF, Ashford JW, Riege WH, Fujikawa DG, Markham CH, Mazziotta JC, Maltese A, Dorsey DA (1985) Similarities of cerebral glucose metabolism in Alzheimer’s and Parkinsonian dementia. J Cereb Blood Flow Metab 5 (Suppl. 1): 169–170Google Scholar
  53. Kumar A, Newberg A, Alavi A, Berlin J, Smith R, Reivich M (1993) Regional cerebral glucose metabolism in late-life depression and Alzheimer’s disease — a preliminary positron emission tomography study. Proc Natl Acad Sci USA 90: 7019–7023PubMedCrossRefGoogle Scholar
  54. Kuwert T, Hömberg V, Steinmetz H, Unverhau S, Langen K-J, Herzog H, Feinendegen LE (1993) Posthypoxic amnesia: regional cerebral glucose consumption measured by positron emission tomography. J Neurol Sci 118:10–16PubMedCrossRefGoogle Scholar
  55. Marcusson, J. European Propentofylline Study Group (1995) HWA 285 for the treatment of dementia — results of a 12 months clinical trial. J Cereb Blood Flow Metab 15 (Suppl. 1): 107Google Scholar
  56. Marsh JT, Schubarth G, Brown WS, Riege W, Strandburg R, Dorsey D, Maltese A, Kuhl D (1990) PET and P300 relationships in early Alzheimer’s disease. Neurobiol Aging 11: 471–476PubMedCrossRefGoogle Scholar
  57. McGeer PL, Kamo H, Harrop R, Li DKB, Tuokko H, McGeer EG, Adam MJ, Ammann W, Beattie BL, Calne DB, Martin WRW, Pate DB, Rogers SG, Ruth TJ, Sayre CI, Stoessl AJ (1986) Positron emission tomography in patients with clinically diagnosed Alzheimer’s disease. Can Med Assoc J 134: 597–607Google Scholar
  58. Messa C, Perani D, Lucignani G, Zenorini A, Zito F, Rizzo G, Grassi F, del Sole A, Franceschi M, Gilardi MC, Fazio F (1994) High-resolution technetium-99m-HMPAO SPECT in patients with probable Alzheimer’s disease: comparison with fluorine-18-FDG PET. J Nucl Med 35:210–216PubMedGoogle Scholar
  59. Micheli E de, Pietrini P, Grady CL, Haxby JV, Salerno J, Gonzales-Aviles A, Schapiro MB (1992) Alzheimer’s disease with prominent visual impairment: a longitudinal PET study of cerebral glucose metabolism. Neurobiol Aging 13 (Suppl. 1): 14Google Scholar
  60. Mielke R, Herholz K, Grond M, Kessler J, Heiss W-D (1992a) Differences of regional cerebral glucose metabolism between presenile and senile dementia of Alzheimer type. Neurobiol Aging 13: 93–98PubMedCrossRefGoogle Scholar
  61. Mielke R, Herholz K, Grond M, Kessler J, Heiss W-D (1992b) Severity of vascular dementia is related to volume of metabolically impaired tissue. Arch Neurol 49: 909–913PubMedCrossRefGoogle Scholar
  62. Mielke R, Herholz K, Grond M, Kessler J, Heiss W-D (1994a) Clinical deterioration in probable Alzheimer’s disease correlates with progressive metabolic impairment of association areas. Dementia 5: 36–41PubMedGoogle Scholar
  63. Mielke R, Pietrzyk U, Jacobs A, Fink GR, Ischimiya A, Kessler J, Herholz K, Heiss W-D (1994b) HMPAO SPET and FDG PET in Alzheimer’s disease and vascular dementia: comparison of perfusion and metabolic pattern. Eur J Nucl Med 21:1052–1060PubMedCrossRefGoogle Scholar
  64. Mielke R, Kessler J, Fink G, Herholz K, Heiss W-D (1995) Dysfunction of visual cortex contributes to disturbed processing of visual information in Alzheimer’s disease. Int J Neurosci 82:1–9PubMedCrossRefGoogle Scholar
  65. Mielke R, Schröder R, Fink GR, Kessler J, Herholz K, Heiss W-D (1996) Regional cerebral glucose metabolism and postmortem pathology in Alzheimer’s disease. Acta Neuropathol 91:174–179PubMedCrossRefGoogle Scholar
  66. Mielke R, Ghaemi M, Kessler J, Kittner B, Szelies B, Herholz K, Heiss W-D (1998) Activation PET demonstrates neurotrophic properties of propentofylline in Alzheimer’s disease. J Neurol Sci 154: 76–82PubMedCrossRefGoogle Scholar
  67. Miller JD, deLeon MJ, Ferris SH, Kluger A, George AE, Reisberg B, Sachs HJ, Wolf AP (1987) Abnormal temporal lobe response in Alzheimer’s disease during cognitive processing as measured by 11C-2-deoxy-D-glucose and PET. J Cereb Blood Flow Metab 7:248–251PubMedCrossRefGoogle Scholar
  68. Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE (1995) A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 36:1238–1248PubMedGoogle Scholar
  69. Nordberg A, Lilja A, Lundqvist H, Hartvig P, Amberla K, Viitanen M, Warpman U, Johansson M et al. (1992) Tacrine restores cholinergic nicotinic receptors and glucose metabolism in Alzheimer patients as visualized by positron emission tomography. Neurobiol Aging 13: 747–758PubMedCrossRefGoogle Scholar
  70. Perani D, Bressi S, Cappa SF, Vallar G, Alberoni M, Grassi F, Caltagirone C, Cipolotti L, Franceschi M, Lenzi GL, Fazio F (1993) Evidence of multiple memory systems in the human brain. A (18F)FDG PET metabolic study. Brain 116: 903–919PubMedCrossRefGoogle Scholar
  71. Phelps ME, Mazziotta JC, Huang SC (1982) Study of cerebral function with positron computed tomography. J Cereb Blood Flow Metab 2:113–162PubMedCrossRefGoogle Scholar
  72. Polich J (1991) P300 in the evaluation of aging and dementia. Electroenceph Clin Neurophysiol 42 (Suppl.): 304–323Google Scholar
  73. Polinsky RJ, Noble H, Di Chiro G, Nee LE, Feldman RG, Brown RT (1987) Dominantly inherited Alzheimer’s disease: cerebral glucose metabolism. J Neurol Neurosurg Psychiatry 50: 752–757PubMedCrossRefGoogle Scholar
  74. Rapoport SI (1991) Positron emission tomography in Alzheimer’s disease in relation to disease pathogenesis: A critical review. Cerebrovasc Brain Metab Rev 3: 297–335PubMedGoogle Scholar
  75. Reisberg B, Ferris SH, DeLeon MJ, Crook T (1982) The global deterioration scale for assessment of primary degenerative dementia. Am J Psychiatry 139:1136–1139PubMedGoogle Scholar
  76. Salmon E, Franck G (1989) Positron emission tomographic study in Alzheimer’s disease and Pick’s disease. Arch Gerontol Geriatr (Suppl. 1): 241–247Google Scholar
  77. Salmon E, Sadzot B, Maquet P, Dive D, Franck G (1989) Slowly progessive aphasia syndrome -a positron emission tomographic study. Acta Neurol (Belg) 89:242–245Google Scholar
  78. Schapiro MB, Ball MJ, Grady CL, Haxby JV, Kaye JA, Rapoport SI (1988) Dementia in Down’s syndrome: cerebral glucose utilization, neuropsychological assessment, and neuropathology. Neurology 38: 938–942PubMedGoogle Scholar
  79. Shinoda I, Furukawa Y, Furukawa S (1990) Stimulation of nerve growth factor synthesis/secretion by propentofylline in cultured mouse astroglial cells. Biochem Pharmacol 39:1813–1816PubMedCrossRefGoogle Scholar
  80. Slansky I, Herholz K, Pietrzyk U, Kessler J, Grond M, Mielke R, Heiss W-D (1995) Cognitive impairment in Alzheimer’s disease correlates with ventricular width and atrophy-corrected cortical glucose metabolism. Neuroradiology 37: 270–277PubMedCrossRefGoogle Scholar
  81. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285PubMedCrossRefGoogle Scholar
  82. Szelies B, Karenberg A (1986) Störungen des Glukosestoffwechsels bei Pick’scher Erkrankung. Fortschr Neurol Psychiatr 54:393–397PubMedCrossRefGoogle Scholar
  83. Szelies B, Herholz K, Pawlik G, Beil C, Wienhard K, Heiss W-D (1986) Zerebraler Glukosestoffwechsel bei präseniler Demenz vom Alzheimer-Typ — Verlaufskontrolle unter Therapie mit muskarinergem Cholinagonisten. Fortschr Neurol Psychiatr 54: 364–373PubMedCrossRefGoogle Scholar
  84. Szelies B, Grond M, Herholz K, Kessler J, Wullen T, Heiss W-D (1992) Quantitative EEG mapping and PET in Alzheimer’s disease. J Neurol Sci 110: 46–56PubMedCrossRefGoogle Scholar
  85. Szelies B, Mielke R, Herholz K, Heiss W-D (1994) Quantitative topographical EEG compared to FDG PET for classification of vascular and degenerative dementia. Electroenceph Clin Neurophysiol 91: 131–139PubMedCrossRefGoogle Scholar
  86. Szelies B, Mielke R, Grond M, Heiss W-D (1995) P300 in Alzheimer’s disease: relationships to dementia severity and glucose metabolism. J Neurol Sci 130: 77–81PubMedCrossRefGoogle Scholar
  87. Tanna NK, Kohn MI, Horwich DN, Jolies PR, Zimmerman RA, Alves WM, Alavi A (1991) Analysis of brain cerebrospinal fluid volumes with MR imaging — impact on PET data correction for atrophy. 2. Aging and Alzheimer dementia . Radiology 178:123–130PubMedGoogle Scholar
  88. Wisniewski KE, Wisniewski HM, Wen GY (1985) Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann Neurol 17: 278–282PubMedCrossRefGoogle Scholar
  89. Yesavage JA, Westphal J, Rush L (1981) Senile dementia: Combined pharmacologic and psychologic treatment. J Am Geriatr Soc 29:164–171PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • W.-D. Heiss
  • B. Szelies

There are no affiliations available

Personalised recommendations